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Introduction



Introduction

• The simplicial homology global optimisation (shgo) algorithm is a

general purpose global optimisation algorithm

• Appropriate for global optimisation of derivative free optimisation

problems (DFO)

- In DFO problems either the gradients of the functions are unavailable

or the functions are black-box functions

• Applications limited to low dimensional problems (∼10 dimensions)

• Information extracted by shgo in the limits:

- Finds the global minimum (ex. ”best” solutions, stable equilibrium)

- Finds all other solutions (ex. other global minima, corresponding to

quasi-equilibrium states that have physical meaning)

- Quantifies the extent of global exploration of the objective function’s

surface using ideas from modern algebraic topology
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Introduction: objective function statement i

Consider a general optimisation problem of the form

minimize f (x), by varying x ∈ Rn

subject to gi (x) ≥ 0, ∀i = 1, . . . ,m

hj(x) = 0, ∀j = 1, . . . , p

• The objective function maps an n-dimensional real space to a scalar

value f : Rn → R

• The variables x are assumed to be bounded

• gi (x) are the inequality constraints g : [l,u]n → Rm

• hj(x) are the equality constraints h : [l,u]n → Rj

• It is assumed that the objective function has a finite number of local

minima
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Introduction: objective function statement ii

for example if lower and upper bounds li and ui are implemented for each

variable then we have an initially defined hyperrectangle

x ∈ Ω ⊆ [l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rn (1)

where Ω is the limited feasible subset excluding points outside the

bounds and constraints:

Ω = {x ∈ [l,u]n | gi (x) ≥ 0,∀i = 1, . . . ,m} (2)

When the constraints in g are linear the set Ω is always a compact space.
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Applying simplicial homology

theory in global optimisation: a

brief one-dimensional motivation



A brief one-dimensional motivation i

Derivative free optimisation:

• f and g are expensive black-box functions

• No derivative information available or difficult to compute

• Common strategies in global optimisation hit the maps f and g with

sampling points and use the resulting geometric information of the

surfaces

• Many popular approaches are based on some kind of statistical or

geometric reasoning or even more simply a multi-start routine that

simply passes any promising sampling points to a local minimization

routine
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A brief one-dimensional motivation ii
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Figure 1: A 1-dimensional objective function surface f : R1 → R
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A brief one-dimensional motivation iii
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Figure 2: Sampling points on the surface found by hitting the map f : R1 → R
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A brief one-dimensional motivation iv
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Figure 3: The information available to an algorithm (not very clear!)
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A brief one-dimensional motivation v
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Figure 4: (Incomplete) geometric information found by building edges
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A brief one-dimensional motivation vi
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Figure 5: Directing the edges deduces even more information
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A brief one-dimensional motivation vii
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Figure 6: This geometric structure leaves us with a clearer picture
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A brief one-dimensional motivation viii

• The number of local minima is at least 3 (by the mean value

theorem)

• If we had just one fewer sampling point it would be impossible to

deduce that there are 3 local minima

• On the other had if we had many more sampling points the number

of minimisers would still only be 3 (a geometric invariance!)

• We want an idea of how many sampling points we need to find all

solutions

• We would also like to know if these solutions are close together or

far apart etc.

• We want to identify regions where it is proven we will find solutions

(locally convex sub-domains that can be used in

local-minimisation)

• Finally we want to extend these ideas to higher dimensions
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Theoretical results in higher dimensions

• Use special simplicial complexes to extract information about the

objective function (hyper-)surface

• Homology groups computed from sampling points on the

hypersurface of objective functions allow us to deduce geometric

features of the hypersurface that we can’t visualize (a hypersurface

has a dimension higher than 3)

• Algebraic topology theory is applied to provide rigorous convergence

properties and higher performance properties by connecting

convergence to the global minimum to geometric invariance

• Modern generalisations of Sperner’s Lemma for the detection and

computation of locally convex sub-domains

• Results have been rigorously extended to arbitrary dimensions1

1Detailed results can be found in the associated JOGO paper [Endres et al., 2018b]
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Theoretical results in higher dimensions i

• Locally convex sub-domains can be found rigorously and the

domains explicitly computed to pass to the local minimisation

routine using the concept of star domains:

Definition

The star of a vertex vi , written st (vi ), is the set of points Q such that

every simplex containing Q contains vi .

• This concept replaces the one-dimension intervals from earlier, the

shgo algorithm extracts st (vi ) domains from the data structures

that are proven to contain local minima
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Theoretical results in higher dimensions ii

• The star domain defined by st (vi )

• The boundary of the star domain ∂st (vi )

vi
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Theoretical results in higher dimensions iii

Possible Sperner simplices around domain v7, domain v1 and v13
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Theoretical results in higher dimensions iv

The domain ∂(v13) cannot be further refined by the theorem
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Theoretical results in higher dimensions v
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Figure 7: Further refinement of the simplicial complex doesn’t increase the

number of locally convex sub-domains extracted by shgo because of the

homomorphims between the homology groups of H and K
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Theoretical results in higher dimensions vi
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Figure 8: After increasing the number of sampling points the number of locally

convex sub-domains from the example problem are still 3, however, the

boundaries of the star domains have been further refined
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Experimental results in brief



Linear-constrained optimisation problems i

• The DISIMPL algorithm was recently proposed by

[Paulavičius and Žilinskas, 2014]

• The experimental investigation shows that the proposed simplicial

algorithm gives very competitive results compared to the DIRECT

algorithm [Paulavičius and Žilinskas, 2016]

• More recently the Lc-DISIMPL variant of the algorithm was

developed to handle optimisation problems with linear constraints

[Paulavičius and Žilinskas, 2016]

• Test on 22 optimisation problems again using the stopping criteria

pe = 0.01%

• Lc-DISIMPL-v, PSwarm (avg), DIRECT-L1 results produced by

[Paulavičius and Žilinskas, 2016]
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Linear-constrained optimisation problems ii

Table 1: Performance over all 22 test problems.

f.e. runtime (s)

problem algorithm

Average SHGO-simplicial 65 0.012852

SHGO-sobol 88 0.004144

TGO 100 0.004542

Lc-DISIMPL-v 366 -

Lc-DISIMPL-c >5877 -

PSO (avg) 3011 -

DIRECT-L1 (pp = 10) >17213 -

DIRECT-L1 (pp = 102) >28421 -

DIRECT-L1 (pp = 106) >75113 -
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Linear-constrained optimisation problems iii

Table 2: Performance over all 22 test problems.

f.e. nlmin nulmin runtime (s)

problem algorithm

All shgo-simpl 1463 26 26 0.27294

shgo-sobol 1864 23 23 0.091168

tgo 2123 29 25 0.093607
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Linear-constrained optimisation problems iv

• The higher performance of shgo compared to tgo and DISIMPL is

due to homological identification of unique locally convex sub-spaces

• shgo had

- no wasted local minimisations unlike tgo because the locally convex

sub-spaces are proven to be unique

- no need for switching between a local and global step as in DISIMPL

because the homology group rank growth tracks the global progress

every iteration without requiring further refinement in sub-spaces

• For the full table of results see

https://stefan-endres.github.io/shgo/files/table.pdf

Link
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Open-source black-box algorithms i
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Figure 9: Normalized performance profiles for SHGO, TGO, DE and BH
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Open-source black-box algorithms ii
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Figure 10: Performance profiles with ranges f.e. = [0, 1000] and p.t. = [0, 0.4]
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Concluding remarks and future

work



Conclusion and future work i

In conclusion:

• The shgo algorithm shows promising properties and competitive

performance

Future:

• Many of the theoretical results apply to a wide range of spatial

partitioning algorithms ex. the family of algorithms based on

DIRECT, Branch-and-Bound etc.

• Global convergence proofs for these algorithms beyond continuous

and Lipschitz smooth (discontinuous) objective functions

[Endres et al., 2018a]
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Thank you for your time.
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Questions?
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