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Abstract The simplicial homology global optimisation (SHGO) algorithm is a general
purpose global optimisation algorithm based on applications of simplicial integral homology
and combinatorial topology. SHGO approximates the homology groups of a complex built
on a hypersurface homeomorphic to a complex on the objective function. This provides both
approximations of locally convex subdomains in the search space through Sperner’s lemma
and a useful visual tool for characterising and efficiently solving higher dimensional black and
grey box optimisation problems. This complex is built up using sampling points within the
feasible search space as vertices. The algorithm is specialised in finding all the local minima
of an objective function with expensive function evaluations efficiently which is especially
suitable to applications such as energy landscape exploration. SHGO was initially developed
as an improvement on the topographical global optimisation (TGO) method. It is proven that
the SHGO algorithm will always outperform TGO on function evaluations if the objective
function is Lipschitz smooth. In this paper SHGO is applied to non-convex problems with
linear and box constraints with bounds placed on the variables. Numerical experiments on
linearly constrained test problems show that SHGO gives competitive results compared to
TGO and the recently developed Lc-DISIMPL algorithm as well as the PSwarm, LGO and
DIRECT-L1 algorithms. Furthermore SHGO is compared with the TGO, basinhopping (BH)
and differential evolution (DE) global optimisation algorithms over a large selection of black-
box problems with bounds placed on the variables from the SciPy benchmarking test suite.
A Python implementation of the SHGO and TGO algorithms published under a MIT license
can be found from https://bitbucket.org/upiamcompthermo/shgo/.
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1 Introduction

1.1 Objective function statement and nomenclature

Consider a general optimisation problem of the form

min
x

f(x)

s.t. g(x) ≥ 0 (1)

The continuous real objective function f(x) maps a vector of dimension n to a scalar value.
It can be either smooth or non-smooth depending on the local minimisation method used.
The variables x are assumed to be bounded. In this publication we mainly consider real,
smooth, but not necessarily convex functions with linear constraint functions. In addition we
will assume that the objective function has a finite number of local minima

f : Rn → R (2)

g maps the set of linear constraints

g : [l,u]n → Rm (3)

For example, if lower and upper bounds li and ui are implemented for each variable then we
have an initially defined hyperrectangle

x ∈ Ω ⊆ [l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rn (4)

where Ω is the limited feasible subset excluding points outside the bounds and constraints:

Ω = {x ∈ [l,u]n | gi(x) ≥ 0, ∀i = 1, . . . ,m} (5)

Since the constraints in g are linear the set Ω is always a compact space.
In the development of SHGO several concepts from algebraic and combinatorial topology

[17] are required. The following definition was adapted from Hatcher [14, p. 9]

Definition 1 A k-simplex is a set of n+ 1 vertices in a convex polyhedron of dimension n.
Formally if the n+ 1 points are the n+ 1 standard n+ 1 basis vectors for R(n+1). Then the
n-dimensional k-simplex is the set

Sn =

{
(v1, . . . , vn+1) ∈ Rn+1 |

n+1∑
1

vn+1 = 1, vi ≥ 0

}

For example, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. We will use the
following combinatorial definition of a simplicial complex [14, p. 107]

Definition 2 A simplicial complex H is a set H0 of vertices together with sets Hn of
n-simplices, which are (n + 1)-element subsets of H0. The only requirement is that each
(k + 1)-elements subset of the vertices of an n-simplex in Hn is a k-simplex, in Hk .
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Thus each n-simplex has n+ 1 distinct vertices, and no other n-simplex has this same set of
vertices.

In this publication the H symbol will be used to represent a (finite) simplicial complex
rather than the more standard ∆ to avoid confusion with the difference and Laplacian oper-
ators common in optimisation. The superscript Hk represents the subset of k−dimensional
simplices where for an n dimensional problem the highest dimensional k−simplex contains
n+ 1 vertices. Finally we define a k-chain [17]

Definition 3 A k-chain is a union of simplices.

For example a 0-chain is a set of vertices, a 1-chain is a set of edges and a 2-chain is a set
of triangles. C(Hk) denotes a k−chain of k−simplices. A vertex in H0 is denoted by vi.
If vi and vj are two endpoints of a directed edge in H1 from vi to vj then the symbol vivj
represents the edge so that it is bounded by the 0−chain ∂ (vivj) = vj − vi and similarly
for an edge directed from vj to vi, we have, ∂ (vjvi) = ∂ (−vivj) = vi − vj . Higher
dimensional simplices can be represented and directed in a similar manner, for example a
triangle consisting of three vertices vi, vj and vk directed as vivjvk has the boundary of
directed edges ∂ (vivjvj) = vivj + vjvk + vjvi.

1.2 Multimodal objective functions and local minima mapping

Non-convex problems are commonly solved using global optimisation methods. One such
example is the topographical global optimisation (TGO) method [15, 43, 44, 45] which is
a clustering algorithm that finds several local minima from which the (approximate) global
minimum is found. It is often desirable to find all the local minima of the objective function.
For example in applications such as energy landscape exploration of potentialmodelswherein
mapping the local minima of the potential functions can provide valuable insights into the
system. Algorithms such as the basin-hopping global optimisation algorithm are typically
used to find these points [49].

The graph extracted from the topographical global optimisation (TGO) [15, 43, 44, 45]
topograph (as described in Section 2) is unsatisfactory in some ways. Primarily because
several starting points in the same locally convex domain can be generated even when
enough information from the objective function sampling is known to prevent this from
occurring. This leads to superfluous function evaluations in the local minimisation step of
the algorithm. Contrary to intuition, this problem is exacerbated by increasing the number
of initial sampling points used in the algorithm as demonstrated in Section 2. This can lead
to a very large number of function evaluations required to solve the problem. In particular in
multimodal energy surfaces where the local minima can often be located in short distances
relative to the search space [52] and thus requires a large number of initial sampling to locate
all these domains. Some shortcomings in using the TGO method to map local minima are:

– Geometric information available from the sampling points is being disregarded by the
graphs built up using only the Euclidean distance metric.

– Knowledge of the number and location of local minimisers in a given sampling set is not
being used to the full extent.

– More than one minimiser might be produced in the same locally convex domain and
there is no guarantee that a minimiser set produced by TGO will be in the locally convex
domains of all local minima even if the number of local minima is known and aminimiser
set of this cardinality is produced.
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By constructing a directed simplicial complex we show that the simplicial homology
global optimisation (SHGO) algorithm does not produce superfluous starting points for
the class of all Lipschitz smooth functions resulting in more efficient performance for these
problems compared to TGO. The directed complex is also used to approximate the homology
group of the objective function hypersurface which, using integral homology version of the
Invariance Theorem [17], allows for efficient mapping of optimisation problems where the
number of local minima is known a-priori.

1.3 Derivative-free methods for Lipschitz optimisation problems

Both the SHGO and TGO algorithms only make use of function evaluations without requir-
ing the derivatives of objective functions. This makes them applicable to black-box global
optimisation problems. A recent review and experimental comparison of 22 derivative-
free optimisation algorithms by Rios and Sahinidis [38] concluded that global optimisa-
tion solvers solvers such as TOMLAB/MULTI-MIN, TOMLAB/GLCCLUSTER, MCS and
TOMLAB/LGO perform better, on average, than other derivative-free solvers in terms of
solution quality within 2500 function evaluations. Both the TOMLAB/GLCCLUSTER and
MCS [19] implementations are based on the well-known DIRECT (DIviding RECTangle)
algorithm [21].

The DISIMPL (DIviding SIMPLices) algorithm was recently proposed by Paulavičius
and Žilinskas [33]. The experimental investigation in [33] shows that the proposed simplicial
algorithm gives very competitive results compared to the DIRECT algorithm. DISIMPL has
been extended in [34, 36]. The Gb-DISIMPL (Globally-biased DISIMPL) was compared
in [36] to the DIRECT and DIRECTl methods in extensive numerical experiments on 800
multidimensional multiextremal test functions.

In a recent adaption of DISIMPL for linearly constrained optimisation problems, Lc-
DISIMPL [35] showed extremely competitive results compared to the PSwarm [47] and
DIRECT-L1 algorithms [12]. In particular the Lc-DISIMPL-v algorithm was shown to
solve the problems in a fewer number of function evaluations on average and was the only
algorithm to converge on all of the test problems. In this publication both the SHGO and
TGO algorithms were tested on the same problem set and the results are compared to the
data from [35] which also contains results on the PSwarm [47] and DIRECT-L1 algorithms
[12].

The DISIMPL algorithm is the most similar to SHGO in the sense that both make use of a
simplicial complex. DISIMPL uses a simplicial complex in a spatial partitioning of the initial
search space. Since the geometric structure of the two algorithms are related, it is reasonable
to expect some theoretical relation of its properties. In particular the graph structure in the
DISIMPL-v algorithm [35] can be used to build the directed simplicial complex used by
SHGO. In Section 5 we also show how some of the same principles developed for SHGO can
also be applied in the DISIMPL-v algorithm since the same information is readily available
to the algorithm.

1.4 Overview of this publication

The TGOmethod is briefly reviewed in Section 2 closely following the formalism developed
by Henderson et al. [15]. In Section 3 we provide numerical examples of TGO which is then
used as an informal experimental motivation for extending the algorithm. These two sections
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are important for continuity and understanding of the improved features of SHGO, in par-
ticular Definition 9 which will be used as a performance criterion. In Section 4 we present
the most immediately apparent extension of TGO and illustrate the shortcomings of that
approach. The new SHGO method is then formally presented in Section 5. In Section 6 we
provide experimental results of linearly constrained problems comparing the SHGO, TGO,
Lc-DISIMPL [35], PSwarm [47] and DIRECT-L1 [12] algorithms. Furthermore SHGO is
compared with the TGO, basinhopping (BH) and differential evolution (DE) global opti-
misation algorithms over a large selection of black-box problems from the SciPy (Jones,
Oliphant, Peterson, et al., 2001–) global optimisation benchmarking test suite. We conclude
with various recommendations for possible further improvements of SHGO.

2 Topographical Global Optimisation (TGO)

The Topographical Global Optimisation (TGO) was originally conceived by Törn [44] and
Henderson et al. [15, 16] introduced new formalisms and empirical methods to determine
hyperparameters described in this section. Henderson et al. [15] also presents the algorithm
in an introductory fashion. It is in essence an iterative clustering algorithm that maps the
hypersurface of the objective function into a topography matrix (called a t-matrix) and then
finds a certain number of starting points referred to as local minimisers. A local search using
the local minimisers as starting points is then used to find each minimum from which the
globalminimum is finally calculated.Henderson et al. [15] used the feasible direction interior-
point method proposed by Herskovits [18] in this step. The feasible direction interior-point
method allows forminimisation of problemswith linear and/or nonlinear equality constraints;
an extension by Henderson et al. [15] of the original applications of Törn [44]. The TGO
method consists of three steps:

1. Uniform random sampling generation of N points in the search space.
2. Construction of the topograph, which is a directed graph with the sampled points as

vertices on a k-nearest neighbours basis with the direction of the arc directed towards a
point with a larger function value.

3. Local minimisation of topograph minimisers.

2.1 Step 1: Random Sampling Point generation

In order to generate the uniform sampling points within Ω the deterministic Sobol sequence
is used in this publication [15, 40]. Other possible low discrepancy sequences such as
the Halton and Van der Corput sequences [26] can also be used in this step. An efficient
Gray code implementation was proposed by Antonov and Saleev [2] wherein a single XOR
operation for each dimension can be used to find the next sampling point in the sequence
xn,i = xn−1,i ⊕ vk,i. An adaptation of this method is available in the open source Python
library UQToolbox [5]. The Sobol sequenced points are generated within the n-dimensional
hypercube [0, 1]n ∈ Rn, providing a uniform distribution on the hypersurface within this
space. In the current implementation this set of points is stretched across the lower and upper
bounds to form the hyperrectangle [l,u]n = [l1, u1]× [l2, u2]× · · · × [ln, un] ⊆ Rn. The
subset of feasible points contained in Ω is found by discarding any points lying outside the
constraints g(x) > 0.
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2.2 Step 2: Construction of the topograph

The topograph is constructed from the generated sampling points within Ω. From the to-
pograph several global minimisers in f are found using the definitions developed in this
section which are then used as starting points for local minimisation routines. FirstN points
are selected from the uniformly generated sequence of points within the feasible domain
of Ω ⊂ Rn. Points generated by the sequence that lie outside the constraints are excluded.
The points are denoted by pi, i = 1, 2, 3 . . . N . Next for each point pi a reference list is
constructed by ordering the other N − 1 points from their nearest to farthest Euclidean
distances. These ordered lists make up the rows of the topography matrix (or topograph).
Furthermore, for some point pj ∈ {1, 2, 3 . . . (N − 1)} in the row with the first entry pi, a
sign is assigned as follows:

sign(pj) =

{
f(pj) ≥ f(pi) → +

f(pj) < f(pi) → −

In order to demonstrate this construction we will define this ordered list in such a way
that the increasing indices represent an ordered list of the nearest points to p1, that is
‖pi − pi+1‖ ≤ ‖pi+1 − pi+2‖ ∀i . Suppose for example that f(p2) ≥ f(p1), f(p3) <
f(p1) and f(pN ) ≥ f(p1), the resulting topograph with the first row known is:

t-matrix =

p1 +p2 −p3 . . . +pN
...

...
...

. . .
...

pN pj . . . pj pj

 (6)

Note that the remaining rows (represented by unknown points and signs pj) are constructed
similarly to the first row for every pi row. The topography matrix can be interpreted as a
directed graph, where the signs represent the directed arcs on the graph. It should also be
noted that if g contains non-linear constraints then the graphs produced by the topograph
may be connected across disconnected and/or non-convex subspaces of Ω. Finally, it should
further be noted that these signs represent direction of the graph structure only, they are not
the usual operation of a scalar acting on a vector. Example 1 in Section 3 demonstrates the
construction of the topograph numerically.

Given an integer 1 ≤ k ≤ (N − 1), the N × k submatrix obtained by considering only
the k-nearest neighbours is called the k-t-matrix. For example for k = 1:

1-t-matrix =

p1 +p2

...
...

pN pj

 (7)

for k = 2:

2-t-matrix =

p1 +p2 −p3

...
...

...
pN pj pj

 (8)

and so forth. The k-t-matrix is a representation of its k+-topograph where every row forms
a directed subgraph.

The following definitions adapted from Henderson et al. [15] are used to find the global
minimisers of the objective function.
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Definition 4 Given an integer 1 ≤ k ≤ (N − 1), the ith row of the k-t-matrix is said to be
a positive row, if all its elements have a plus sign. That is iff f(pj) ≥ f(pi) ∀j.

Definition 5 Given an integer 1 ≤ k ≤ (N−1), a sampling point pi has a positive reference
in the k-t-matrix, if there exists j 6= i such that (a) the jth row of the k-t-matrix is a positive
row and (b) the number +i is an element of this jth row.

Definition 6 Given an integer 1 ≤ k ≤ (N − 1), the sample point pi is called a local
minimiser of f in the k+-topograph if the ith row of the k-t-matrix is a positive row.

Definition 7 Given an integer 1 ≤ k ≤ (N − 1), the sample point pi is a global minimiser
of f in the k+-topograph if pi is a local minimiser of f in the k+-topograph and, in addition,
pi has no positive references in the k-t-matrix.

The following propositions can be readily demonstrated to show the consistency of the
aforementioned definitions [15].

Proposition 1 Given an integer 1 ≤ k ≤ (N −1), the sample point pi is a global minimiser
of f in the k+-topograph if and only if the sample point pi is the only minimiser of f in the
k+-topograph which is global.

Proposition 2 Given an integer 1 ≤ k ≤ (N − 1), then the ith row of k-t-matrix is the only
positive row of this matrix if and only if the sample point pi is the only minimiser of f in the
k+-topograph which is global.

Corollary 1 Given an integer 1 ≤ k ≤ (N − 1), if the sample point pi is the only local
minimiser of f in the k+-topograph, then pi is a global minimiser of f in this graph.

In this publication we will use the paradigm that all local minimisers of f in the k+
-topograph will be used for the local search (Paradigm 2.2 in Henderson et al. [15]). As
described in [45] the number of local minimisers of f in the k+-topograph is greater than
or equal to number of global minimisers in the topograph. We will therefore employ the
following definition

Definition 8 Given an integer 1 ≤ k ≤ (N−1), the minimiser poolMk is the set containing
all local minimisers pi in the k+-topograph. The total number of starting points used in the
local search step is equal to the cardinality of the minimiser pool |Mk|.

The entire point of using k-t-matrices is because a t-matrix will always have at most
one local (and thus global) minimiser. This is undesirable since this sampling point is not
necessarily the starting point closest to the true global minimum of the objective function.
Henderson et al. [15] developed a semi-empirical formula producing an integer value kc
which is used as an estimate for the optimal value for the integer k.

2.3 Step 3: Local minimisation

Each of the minimisers from the kc-t-topograph is now used as a starting point in a local
minimisation routine. The resulting minima are used to find the global minimum. Conceiv-
ably various local optimisation routines can be used to address a broad class of optimisations
problems. For problems with non-linear inequality constraints Henderson et al. [15] used the
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feasible direction interior-point method proposed by Herskovits [18] minimising the objec-
tive function f subject to the set of inequality constraint functions g using the minimiser set
as the initial starting points for the algorithm. An algorithm used to solve the feasible direc-
tion interior-point method using the set of starting points calculated in step 2 is presented in
detail by Henderson et al. [15].

In this publicationwewillmainly be using the sequential least squares quadratic program-
ming optimisation algorithm (SLSQP) contained in the SciPy library originally developed
by Kraft [24, 25]. Our Python implementation of the TGO algorithm published under an
open source licence uses this algorithm as implemented in the SciPy library [11, 22].

3 Motivation and a one-dimensional prelude

In this section we will demonstrate how the Euclidean distance criterion in the TGO method
disregards useful information about the (approximate) geometry of the objective function and
we show how known information can be used effectively both in global optimisation and in
mapping the local minima of objective functions as efficiently as possible. We also show how
two important hyperparameters used by TGO, namely the number of sampling pointsN and
the choice of k can be iteratively selected by intelligently exploiting information known from
the topograph. This draws parallels to other works on iterative versions of TGO (I-TGO) [46]
trying to extract information from black-box objective functions. The informal, but intuitive
ideas developed here will later be extended more rigorously to higher dimensional surfaces.
Note that from Equation (5) Ω is always a compact space, this fact is important in several
proofs used in this section.

Example 1 Consider the following objective function

min
x

f(x) =
sin(x)

x
, x ∈ Ω = [1, 20] (9)

In this instance of the bounded optimisation problem there are 3 local minima which we will
try to map in as few function evaluations as possible.

Following the TGO procedure we start by generating low-discrepancy sampling points.
The first N = 10 points in the 1-dimensional Sobol sequence is given by P = {p1 =
1.0, p2 = 10.5, p3 = 15.25, p4 = 5.75, p5 = 8.125, p6 = 17.625, p7 = 12.875, p8 =
3.375, p9 = 4.5625, p10 = 14.0625} ⊂ Ω. After mapping the objective function at the set
of sampling points

f :



p1 = 1.0
p2 = 10.5
p3 = 15.25
p4 = 5.75
p5 = 8.125
p6 = 17.625
p7 = 12.875
p8 = 3.375
p9 = 4.5625
p10 = 14.0625.


→



f1 = 0.84147
f2 = −0.08378
f3 = 0.02899
f4 = −0.08840
f5 = 0.11858
f6 = −0.05337
f7 = 0.02359
f8 = −0.06853
f9 = −0.21672
f10 = 0.07091


(10)



A simplicial homology algorithm for Lipschitz optimisation 9

the corresponding topograph is constructed

p1 −p8 −p9 −p4 −p5 −p2 −p7 −p10 −p3 −p6
p2 +p5 +p7 +p10 +p3 −p4 −p9 +p6 +p8 +p1
p3 +p10 −p6 −p7 −p2 +p5 −p4 −p9 −p8 +p1
p4 −p9 +p5 +p8 +p1 +p2 +p7 +p10 +p3 +p6
p5 −p2 −p4 −p9 −p7 −p8 −p10 +p1 −p3 −p6
p6 +p3 +p10 +p7 −p2 +p5 −p4 −p9 −p8 +p1
p7 +p10 −p2 +p3 +p5 −p6 −p4 −p9 −p8 +p1
p8 −p9 +p1 −p4 +p5 −p2 +p7 +p10 +p3 +p6
p9 +p4 +p8 +p1 +p5 +p2 +p7 +p10 +p3 +p6
p10 −p3 −p7 −p2 −p6 +p5 −p4 −p9 −p8 +p1


(11)

The sampling points together with the objective function evaluations are plotted in
Figure 1. Using the empirical relation from Henderson et al. [15] the optimal kc is calculated
at kc = 8. Using Definition 6 we find that the resulting 8-t-matrix has only one minimiser;
the global minimiser at p9 = 4.5625. For the local minimisation we use the SLSQP method
as implemented in the function scipy.optimize.minimize [22] to find the approximate global
minimum at x = 4.4934.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x1

−0.2

0.0

0.2

0.4

0.6

0.8

f

f(p1)

f(p2)

f(p3)

f(p4)

f(p5)

f(p6)

f(p7)

f(p8)

f(p9)

f(p10)

Fig. 1 Test function give by Equation (9) with 10 Sobol sequenced sampling points

Observing Figure 1 it is immediately apparent that the set of 10 sampling points alone
provides adequate information to deduce that there are at least 3 local minima. Observe
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that there are at least two other local minima since f(p2) < f(p7) < f(p5). So at least
one local minimum exists in the domain (p5, p7) ⊂ R since between p5 and p2 we must
have, by the mean value theorem (MVT), df

dx < 0 for some domain x ∈ [p5, p2] ⊂ R.
Similarly for x ∈ [p2, p7] ⊂ R we have by MVT df

dx > 0. Since f is a smooth, continuous
function for x ∈ (0,∞) there must exist at least one stationary point x ∈ (p5, p7) ⊂ Rwhere
df
dx = 0. Furthermore we observe f(p6) < f(p3) indicating another minimum in the domain
x ∈ (p3, 20] ⊂ R since the minimum must be either on the boundary or in x ∈ (p3, 20] ⊂ R
by the same argument as above.

The empirical relation by Henderson et al. [15] was mainly developed for the purpose of
finding the global minimum. Therefore if only 10 sampling points are available, then to find
more local minima using the TGOmethod is required to force a lower k value. Alternatively,
since kc is a function of N , simply sampling more points is sufficient to find all the local
minima using Henderson’s formula for this test problem. For example at N = 16 all 3 local
minima are produced by TGO with Henderson’s formula. Figure 2 shows the number of
minimisers found at different k values for this example. The maximum minimiser set (other
than using every sampling point as a starting point) can be trivially extracted by setting
k = 1 and calculating |M1|. However, in this Example it leads to more starting points than
optimal since at least two minimisers will be in the same convex basin domain and therefore
converge to sameminimum in the localminimisation step. This results in superfluous function
evaluations without extracting more useful information from the objective function.

This idea drives the motivation behind the following definition.

Definition 9 For a given setP ofN sampling points, kopt is any integer 1 ≤ k ≤ (N−1) that
will produce the optimal minimiser setMkopt containing the maximum set of minimisers
such that no two starting points extracted fromMkopt will lead to the same minimum in
the local optimisation step for some tolerance ε. In other words every element contained in
Mkopt should lie in a unique locally convex sub-domain.

Note that for a given N , Mkopt might not produce all the true local minima of an
objective function.What’s important is that, given the information known from the sampling,
the maximum number of local minima are found. In addition, no function evaluations are
wasted in the local minimisation step which lead to the same minimum.

In Example 1 for N = 10 the optimal k values are kopt = {2, 3} which will produce 3
minimisers |M2| = |M3| = 3.Wewill now show that these lower k values carry unexploited
information on the best approximate geometry of the objective function. For example in
Figure 3 we plot the |Mk| values corresponding to the set k = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
for every sampling point range N ∈ [2, 50].

From Figure 3 we notice the special property of k = 3 for one dimensional objective
functions sampled with the Sobol sequence.

Firstly, for a lower number of sampling points N it provides a higher number of starting
minimisers than k > 3. Note that by inspection of Definition 6 it can be determined that
any k > 3 value will always produce an equal or lower number of minimisers than k = 3.
When adding columns to a positive row there are only two possibilities: the next sampling
point in the row can either have a positive or a negative sign. All other elements in the row
have a positive sign by definition (see Definition 6). If the next sampling point in the row has
a positive sign then the row will just remain a positive row and the number of minimisers
remain the same. If the point is a negative reference point then the row will no longer be a
positive row and thus the point is no longer a minimiser, lowering the total.

Secondly it can be observed that k = 3 never calculates a number of starting minimisers
higher than optimal unlike k < 3. Therefore by using k = 3 in Example 1 TGO will always
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k
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4

5

|Mk|

Fig. 2 Number of minimisers |Mk| found using the TGO method for different k values atN = 10
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|Mk|

k = 1

k = 2

k = 3
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k = 8
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Fig. 3 Number of minimisers |Mk| found using the TGO method for the given k values at various sampling
pointsN

find asmanyminimisers in as few sampling1 function evaluations as possible and furthermore
all local minima will be found when N ≥ 10. It should be noted that the total number of
function evaluations depends on the particular local minimisation algorithm used. However,
it is apparent that each minimiser starting point is in a unique locally convex domain. It is

1 not necessarily total function evaluations since starting points closer to the local minima may provide
better performance for a given local minimisation routines
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Fig. 4 Number of minimisers |Mk| found using the TGO method for the given k values at various sampling
pointsN

tempting for an optimisation practitioner to use the size of the set of minimisers |M3| as
a stopping criterion for iterative sampling N of one dimensional objective functions. The
practical usefulness of this idea can be demonstrated with the following example:

Example 2 The following instance of the optimisation problem has 13 local minima in the
given domain

min
x

f(x) = −x sin(x), x ∈ Ω = [1, 80] (12)

From Figure 4 we can deduce that the minimum number of sampling points required for
k = 3 to find all local minima using the Sobol sequence is N = 40, this sampling is shown
in Figure 5. If N < 40 then there aren’t enough sampling points to deduce that there are at
least 13 locally convex domains from using the same arguments as in Example 1. Note for
example that if we used a sequence that skipped p1 then N = 39 would be adequate since
l = 1 < p32 < p33. Using our Python implementation of TGO [11] with N = 40 all 13
local minima of the objective function were found in a total of 285 function evaluations.

An example of a stopping criterion would be to stop sampling if |M3| is unchanged
after, say, 10 sampling point evaluations. The rate at which the number of elements in |M3|
grows with increasing N also provides a heuristic for characterising the multimodality and
the geometry of the objective function. Objective functions that have a large number of
local minima in a small domain (and relatively fewer minima in other larger domains) will
have a much smaller growth in |M3| for a given low-discrepancy sampling. This idea of
continuously classifying and extracting approximate function characteristic information from
the sampling points will be formalised and extended to higher dimensions in Section 5.

There is a simple reason why the 3-t-matrix has this quality in the first dimension for the
optimisation problem given in Equation (9). However, it is not guaranteed that this property
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Fig. 5 Plot of the objective function in Example 2 forN = 40 sampling points

holds for any sampling point distribution. In fact it holds true only under the following
conditions:

1. Consider all points in the ordered sampling set from the smallest to greatest x value
P = {pi | p0 < p1 < p2 . . . < pN − 1, pi ∈ (xl, xu)}, excluding the supremum
and infimum.

2. For any given point pi the Euclidean distance between pi and 2 of its nearest sampling
points pi−1 < pi < pi+1 should be less than the relative difference between pi and a
fourth point in the sampling sequence |pi − pj | where j 6= i, i− 1, i+ 1.

In fact it is easy to prove both that for a locally, strictly convex domain of f the
3−topograph construction can produce a larger minimiser pool M3 than optimal. It can
also be shown that a construction must exist where the optimal number of minimisers will
always be extracted regardless of the sampling distribution. Furthermore it can be shown
that at most 3 sampling points within a locally convex domain x ∈ [xl, xu] is required to
produce enough information so that only one minimiser in the domain is produced.

Theorem 1 There exists a 1-dimensional sampling sequence such that k = 3 will produce
a minimiser pool larger than optimal as defined by Definition 9.

Proof Consider a subdomain x ∈ [xl, xu] ⊂ R for which f is strictly convex. We define the
set of N sampling points P ordered in such a way that

P = {pi | p0 < p1 < p2 < . . . < pN−1, pi ∈ (xl, xu)}

Let F = {f0, f1, f2, . . . , fN−1} be set of one-to-one function values corresponding to
the points mapped by f : P → F .

Suppose we have f1 < f0 and f1 < f2 < f3, . . . fN−1. By construction we have
|p1 − p2| < |p1 − p3| < |p1 − p4| < |p1 − p5| then by the Definitions 4, 5 and 6 p1 is
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a minimiser of the 3 − t−topograph. Suppose we have a sampling distribution such that
|p2− p3| < |p1− p2|, |p2− p4| < |p1− p2| and |p2− p5| < |p1− p2| then by the definitions
4, 5 and 6 p3 is also a minimiser of the 3−t−topograph. Therefore more than twominimisers
are produced in the same locally convex sub-domain of [xl, xu]. We have shown thatM3

can produce a minimiser pool larger than optimal which concludes the proof.

Lemma 1 A construction exists that will always produce a minimiser pool larger than
optimal as defined by Definition 9 for any given 1-dimensional sampling sequence.

Now suppose that instead of using only the Euclidean distance metric we also invoke
knowledge of the nearest point in every cartesian direction. We use the criterion that a
minimiser point pi is a minimiser iff with the ordering constructed in P and F we have
fi < fi−1 and fi < fi+1. With this definition if the point pi is a minimiser then no other
point meets the criterion since by construction of the sampling in the locally convex domain
f0 > f1 > · · · > fi−1 > fi and fi+1 < fi+2 < fi+3 < · · · < fN−1. This proves Lemma
1.

Finally note that only information from the 3 points in the locally convex sub-domain of
[xl, xu] and their corresponding function values fi−1, fi and fi+1 are needed to produce a
minimiser using this criterion.

An important consequence here is that for low discrepancy sequences in higher di-
mensions and for less well behaved objective functions the topographs connected with the
Euclidean distance metrics will similarly discard available information about the local ge-
ometry. This produces larger than optimal minimiser pools leading to very high numbers of
function evaluations needed to solve the problem.

In the following section we will develop a more efficient algorithm that will make use of
this information. SHGO will always produce equivalent results to this algorithm in the one
dimensional case.

4 Axially directed topograph

Based on the observations from Section 3 we develop the ATGO (axially directed topograph-
ical global optimisation) algorithm that, for a given sampling set, always uses the optimal
number of starting minimisers as defined for one dimensional objective functions without
requiring a-priori specification of the k parameter. Here a new graph structure is proposed
and attempts are made to directly extend the idea to higher dimensions by connecting every
vertex to the nearest vertex in every cartesian axis direction. In Theorem 2 we show that the
one dimensional properties of this algorithm does not extend to higher dimensions which
finally leads us to the built up complexes in Section 5. The main conclusion of this section is
that simpler graph structures cannot be used to find locally convex sub-domains of a function
in the same way that was accomplished in Section 3.

The algorithm proceeds in the same way as TGO described in Section 2 except for step
2 where a new structure described in Section 4.1 replaces the topograph.

4.1 Axially directed topograph

Let F be the set of scalar outputs mapped by the objective function f : P → F for a given
sampling set P ⊆ Ω ⊆ Rn. The scalar elements fi ∈ F have one-to-one correspondence
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with the vector elementspi ∈ P where the integer i ∈ {1, 2, 3, . . . , N} indicates the sampling
point index. The vector pi in turn has components xij where the integer j ∈ {1, 2, 3, . . . , n}
indicates the dimension of the scalar value ∀i(xi1, xi2, xi3, . . . , xin) ∈ pi.

We wish to construct a graph that is ordered along the coordinate axes, this is done by
formally defining the following related partially ordered sets.

Definition 10 Given a finite structured set of N feasible ordered sampling points P =
(p1,p2, . . . ,pN ) with its corresponding objective function outputs F = (f1, f2, . . . , fN ),
the index set of P is given as the ordered set I = (i = {1, 2, 3, . . . , N},≤)

Note that the initial ordering of the index set is arbitrary. What’s important is that an ordered
index set is defined. This ordering will allow us to keep track of any vertex in the graph to its
corresponding sampling point in P so that the corresponding objective function only needs
to be evaluated once. Herein the order is taken as the order that is generated by the Sobol
sequence.

Definition 11 Given a set of feasible sampling points P ⊆ Ω ⊆ Rn define Xj for every
dimension j ∈ {1, 2, 3, . . . , n} as the partially ordered set Xj = {pi | ∀i(xij < xi+1

j )}.

The definition is demonstrated with the following numerical example:

Example 3 Given set of the first 5 points in the 2-dimensional Sobol sequence bounded by
the 2-cube:

P = ((0, 0), (0.5, 0.5), (0.75, 0.25), (0.25, 0.75), (0.375, 0.375) ) ⊆ [0, 1]× [0, 1] ⊆ R2

Let f(x) = x21 + x22 so that

F = (0, 0.5, 0.625, 0.625, 0.28125)

then
X1 = ((0, 0), (0.25, 0.75), (0.375, 0.375), (0.5, 0.5), (0.75, 0.25))

and
X2 = ((0, 0), (0.75, 0.25), (0.375, 0.375), (0.5, 0.5), (0.25, 0.75))

The corresponding index sets are I1 = (1, 4, 5, 2, 3) and I2 = (1, 3, 5, 2, 4).

Definition 12 For every dimension j, Fj is the partially ordered set such that the position
of the elements Xj correspond to the original index sampling of P , Fj = {f i,kj | ∀i(xij <
xi+1
j ), f i,kj = fk ∈ F , k ⊆ I}

That is the first superscript i of the elements f i,k indicate the ordering inFj , while the second
superscript k indicates the corresponding scalar value of f i,k in F . Ordering the example we
have F1 = (0, 0.625, 0.28125, 0.5, 0.625) and F2 = (0, 0.625, 0.28125, 0.5, 0.625).

Definition 13 For every dimension j, define the partially ordered sets of cardinalityN such
that F+

j = {f i,kj − f i−1,k
j | ∀i(xij < xi+1

j ), f i,kj = fk ∈ F , i = {1, 2, . . . , N, k ⊂ I}} and
F−j = {f i,kj − f i+1,k

j | ∀i(xij < xi+1
j ), f i,kj = fk ∈ F , i = {0, 1, . . . , N − 1}, k ⊂ I}
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These sets are essentially objective function differences between the sampling points along
each dimensional Cartesesian axis. Continuing from the numerical example we have

F+
1 = ( 0.625,−0.34375, 0.21875, 0.125)

F+
2 = (−0.625, 0.34375,−0.21875,−0.125)

F−1 = ( 0.625,−0.34375, 0.21875, 0.125)

F−2 = (−0.625, 0.34375,−0.21875,−0.125)

We denote the elements as f+i,kj ∈ F+
j and f−i,kj ∈ F−j for every dimension j ∈

{1, 2, 3, . . . , n}, cartesian ordering i ⊆ I and corresponding sampling point k ∈ I. The
usefulness of these abstract constructions is apparent in the following definition.

Definition 14 For a given sampling set P . The minimiser poolM is defined as

M =Mc ∪Mlb ∪Mub

where
Mc =

{
pi | ∀j

(
(f+ij > 0) ∧ (f

−(i+1)
j > 0)

)
, i = {1, 2, 3, . . . , N − 1}

}
Mlb =

{
pi | ∀j

(
f−ij < 0

)
, i = {0}

}
Mub =

{
pi | ∀j

(
f+ij < 0

)
, i = {N}

}
That is, we simply check the finite difference between sampling points in every cartesian

direction. In addition we check if the sampling points on the boundaries are minimisers.

Theorem 2 The minimiser poolM from Definition 14 always produces a set that is either
smaller than or equal to the optimum minimiser pool as defined by Definition 9 iff j = 1.

Proof The proof for j = 1 follows the same argument from Section 3. By Definitions 10,
11 and 12 we have the ordering constructed as P and F1. If a given point pi is a minimiser
with f+i1 > 0 and f−i1 > 0, then we have by Definition 13 f i < f i−1 and f i < f i+1,
conversely if a given point pi is not a minimiser then either f+i1 < 0 or f−i1 > 0 so
that regardless of the sampling method used and the Euclidean distance between points a
minimiser will never be generated for any point that has

(
(f i > f i−1) ∧ (f i > f i+1)

)
∨(

(f i < f i−1) ∧ (f i < f i+1)
)
.

If j > 1 we have no such guarantee for a higher dimensional locally convex domain. As
a counter example consider the set of points

P = ((0, 0), (0.25, 0.25), (0.75, 0.125), (0.125, 0.75))

on the same function as above, the minimiser set produced isM = {(0, 0), (0.25, 0.25)}
which is clearly larger than optimal and will produce the same local minimum.

This unsatisfactory result for higher dimensions could still potentially show good perfor-
mance for more regular spaced sampling such as grids, however, as we will see in the next
section the SHGO algorithm can guarantee that the optimal minimiser set will be produced
for any dimension.
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Algorithm 1 ATGO algorithm
1: procedure Initialisation
2: input an objective function f , constraint functions g and variable bounds [l,u]n.
3: inputN initial sampling points.
4: Define a sampling sequence that generates a set X of sampling points in the unit hypercube space

[0,1]n

5: end procedure
6: procedure Initial sampling
7: P = ∅
8: while |P| <N do
9: GenerateN − |P| sequential sampling points X ⊂ Rn

10: Stretch X over the lower and upper bounds [l,u]n
11: P = {Xi | g(Xi) ≥ 0,∀Xi ∈ X} ∪ P . (Find P in the feasible subset Ω by discarding any

points mapped outside the linear constraints g and adding to the current set of P .)
12: Set X = ∅
13: end while
14: Find F from the objective function f : P → F
15: end procedure
16: procedure ConstructM
17: CalculateM from the sets P and F using Definitions 11 through 14.
18: end procedure
19: procedure Local minimisation
20: Calculate the approximate local minima of f using a local minimisation routine with the elements of
M as starting points. . These local minimisations can be performed in parallel.

21: end procedure
22: procedure Process return objects
23: Order the final outputs of the minima of f found in the local minimisation step to find the approximate

global minimum
24: outputf∗, x∗ . Here f∗, x∗ refer to the best objective function output found by the algorithm.
25: output A list of all the minima found in the local minimisation step.
26: end procedure

4.2 Implementation

Algorithm 1 provides a high-level overview of the ATGO algorithm. A Python implementa-
tion of this algorithm can be found in [10].

5 Simplicial Homology Global Optimisation

5.1 Overview

The SHGO method strongly relies on constructing a simplicial complex using the sampled
points of an objective function f as vertices. From this construction of the complex H we
use the resulting directed subgraph which contains the set of all 1−chains from the elements
of H1 ∈ H to find minimiser pools using definitions similar to the methods demonstrated
in the previous sections. This is accomplished by the application of Sperner’s lemma [41]
allowing us to approximate the domains of stationary points for any objective function in the
feasible search space Ω.

We prove that, if provided with an adequate sampling set, the construction of H will
produce the same homology groups. We use this result to show that for the given sampling
set of vertices H0 ∈ H we always extract the optimal minimiser pool similar to the one-
dimensional case described in Section 3, but extended to higher dimensions.

The algorithm itself consists of four steps which will be described in detail:
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1. Uniform sampling point generation of N vertices in the search space within the bounded
and constrained subspace of Ω from which the 0−chains of H0 are constructed.

2. Construction of the directed simplicial complex H by triangulation of the vertices.
3. Construction of the minimiser pool M ⊂ H0 by repeated application of Sperner’s

lemma.
4. Local minimisation using the starting points defined inM.

We will start by formally defining the construction of H from a given set of feasible
sampling points P and proving its properties.

5.2 Directed simplicial complex approximation of the objective function

Consider again the general objective function mapping in the continuous domain f : Rn →
R. The purpose of this section is to describe a discrete mapping h : P → H to provide
a simplicial approximation for the surface of f . To guide the reader the methods will be
demonstrated on the simple 2-dimensional optimisation problem defined in Example 4.
The use of a 2-dimensional surface allows for a demonstration of the techniques while the
abstractions defined are readily extended to higher dimensions.

We start by formally defining the set of vertices from which 0−chains of the simplicial
complex are built and the of edges from which the 1−chains of H are built.

Definition 15 Let X be the set of sampling points generated by a sampling sequence in the
bounded hyperrectangle [l,u]n. The set P = {x ∈ X | g(x) ≥ 0} is a set of points within
the feasible set Ω .

Definition 16 For an objective function f , F is the set of scalar outputs mapped by the
objective function f : P → F for a given sampling set P ⊆ Ω ⊆ Rn.

Definition 17 LetH be a directed simplicial complex. ThenH0 := P is the set of all vertices
of H .

Definition 18 For a given set of vertices H0, the simplicial complex H is constructed by a
triangulation connecting every vertex in H0. The triangulation supplies a set of undirected
edges E.

Definition 19 The set H1 is constructed by directing every edge in E. A vertex vi ∈ H0 is
the connected to another vertex vj by an edge contained in E. The edge is directed as vivj
from vi to vj iff f(vi) < f(vj) so that ∂ (vivj) = vj − vi. Similarly an edge is directed as
vjvi from vj to vi iff f(vi) > f(vj) so that ∂ (vjvi) = vi − vj .

For practical computational reasonswemust also consider the casewhere f(vi) = f(vj).
If neither vi or vj is already a minimiser we will make use of rule that the incidence direction
of the connecting edge is always directed towards the vertex that was generated earliest by
the sampling point sequence. If vi is not connected to another vertex vk then we leave the
notation vivk undefined and let ∂ (vivk) = 0. We let the higher dimensional simplices of
Hk, k = 2, 3, . . . n+1 be directed in any arbitrary directionwhich completes the construction
of the complex h : P → H. We can now use H to find the minimiser pool for the local
minimisation starting points used by the algorithm:

Definition 20 A vertex vi is a minimiser iff every edge connected to vi is directed away
from vi, that is ∂ (vivj) = (vj 6=i − vi)∨ 0 ∀vj 6=i ∈ H0. The minimiser poolM is the set of
all minimisers.
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Fig. 6 A 3-dimensional surface plot of the optimisation test function given in Example 4 f(x) =
− sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1 for the domain x ∈ Ω = [0, 9]× [−2.5, 2.5]

We will also make extensive use of star notation [14, 17]:

Definition 21 The star of a vertex vi, written st (vi), is the set of points Q such that every
simplex containing Q contains vi.

The k−chainC(Hk), k = n+1 of simplices in st (vi) forms a boundary cycle ∂(C(Hn+1))
with ∂

(
∂(C(Hn+1))

)
= ∅. The faces of ∂(Hn+1) are the bounds of the domain defined by

st (vi).
A visual demonstration of these constructions and notations is provided in the following

numerical example:

Example 4 The Ursem01 function for two dimensions is defined as follows [13]

min f(x) = − sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1, x ∈ Ω = [0, 9]× [−2.5, 2.5]

Figure 6 provides a 3 dimensional plot of this function. The function has three local minima
within the domain x ∈ [0, 9]× [−2.5, 2.5].
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We use a set P ofN = 15 sampling points from the 2-dimensional Sobol sequence. First
map out the objective function values:

f :



v0 = (0.0,−2.5)
v1 = (4.6, 0.0)
v2 = (6.9,−1.25)
v3 = (2.3, 1.25)
v4 = (3.45,−0.625)
v5 = (8.05, 1.875)
v6 = (5.75,−1.875)
v7 = (1.15, 0.625)
v8 = (1.725,−0.9375)
v9 = (6.325, 1.5625)
v10 = (8.625,−2.1875)
v11 = (4.025, 0.3125)
v12 = (2.875,−1.5625)
v13 = (7.475, 0.9375)
v14 = (5.175,−0.3125)



→



f0 = 3.403
f1 = −6.275
f2 = −4.0651
f3 = −2.208
f4 = −3.3429
f5 = −4.051
f6 = −1.493
f7 = −3.674
f8 = −3.591
f9 = −2.191
f10 = −2.606
f11 = −5.062
f12 = −0.601
f13 = −6.239
f14 = −6.044



(13)

From Definition 17 we find H0 from P . Next we use Delaunay triangulation to find a
set of connected edges according to Definition 18. Any triangulation scheme resulting in a
simplicial complex can be used. Next the edges are directed from the calculated values of F
using Definition 19. Finally fromDefinition 20 we find the minimiser setM = {v1, v7, v13}.
The resulting structure is shown in Figure 7. Also shown in Figure 7 is the domain of st (v1)
for a visual description of Definition 21. Next we increase the sampling size to N = 150
points and repeat the procedure. The resulting complex is shown in Figure 8. Notice that
while the minimiser vertices have changed (now closer to the true continuous local minima),
the cardinality of the minimiser pool |M| remains unchanged. That is, given an adequate
number sampling points |M| will cease to grow with increasing N , providing a heuristic
for the number of sampling points needed to approximately map all minima of an objective
function. This useful property of the SHGO algorithm is proven formally in Section 5.4.

5.3 Guarantee of stationary points in sub-domains near minimiser points

This section is devoted to proving the following theorem:

Theorem 3 Given a minimiser vi ∈ M ⊆ H0 on the surface of a continuous, Lipschitz
smooth objective function f with a compact bounded domain inRn and rangeR, there exists
at least one stationary point of f within the domain defined by st (vi).

Proof Our strategy relies on finding a simplex with a Sperner labelling where each label
represents a different n+ 1 label in every vector direction of the gradient vector field∇f of
f where of the n+1 Cartesian directions we require only a vector pointing towards a section
defined by n + 1 hyperplane cuts, the remainder of the proof then proceeds as usual for
Brouwer’s fixed point theorem [6] found in for example Henle [17, p. 40] utilising Sperner’s
lemma.

Theorem 4 (Sperner’s lemma [41]) Every Sperner labelling of a triangulation of a n-
dimensional simplex contains a cell labelled with a complete set of labels: 1,2, . . . , n+1.
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Fig. 7 A directed complex H with N = 15 forming a simplicial approximation for an objective function.
There are threeminimiser vertices v1, v7 and v13 shown by the big red dots. The shaded star domain represents
the domain defined by st (v1)

Start with the observation that for any minimiser vi ∈M ⊆ H0 we have by construction
that for any vertex vj with incidence on a connecting edge vivj that f(vi) < f(vj), so by
the MVT there is at least one point on vivj where ∇f points towards a Cartesian direction
in a section that can receive a unique Sperner label. If we have n+ 1 vertices with incidence
on an edge vivj ⊆ H1 in every required Cartesian direction then we have a simplex within
st (vi) with a Sperner labelling.

In the case where we do not have n + 1 vertices in every required section then by
construction there is no vertex between vi and the boundary of f defined byΩ in the required
section. In the case where the constraint is not active and there exists at least one point vk
boundary where ∇f does not point towards the boundary and by the MVT vk can receive
a unique Sperner label from which we can construct a simplex within st (vi) with Sperner
labelling.

Following the combinatorial version of Brouwer’s fixed point theorem [17] since ∇f
is continuous and the domain st (vi) is compact we can produce a sequence of complete
triangulations with arbitrarily small size in which the size of the simplices decreases toward
zero. This sequence produces a sequence of vertices with gradients∇f(V ) pointing in every
n + 1 direction. By continuity there is a vector ∇f(X) near the sequences, since the zero
vector is the only vector pointing in all n+ 1 directions we have a point X bounded by the
domain defined by st (vi) where ∇f(X) = 0̄. In the case where the constraint is active a
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Fig. 8 A directed complexH forming a simplicial approximation for an objective function with 150 vertices.
There are three minimiser vertices given by the big red dots. The refined star domains are shaded in the figure

local minimum lies on the constraint which is in the domain defined st (vi). This concludes
the proof.

Figure 9 provides a visual demonstration of the proof using the complex from Example
4. Here we have divided the plane so that the 3 required directions are [0, π2 ), [π2 , π) and
[π, 2π). Note that this division is arbitrary and any n + 1 = 3 subdivisions can be chosen
as long as all possible n + 1 = 3 directions can form a simplex in the space are covered.
The three possible simplices are contained within the star domains of each minimiser st (v1),
st (v7) and st (v13).

First consider the minimiser v13. There are three possible edges in [π2 , π) on which a
point exists that can be used as a vertex to receive a Sperner labelling for that direction
namely v13v14, v13v2 and v13v10. The only possible edges in the [0, π2 ), [π2 , π) directions
are v13v5 and v13v9 respectively. The simplex v5v9v10 drawn in Figure 9 is not necessarily
the simplex with a Sperner labelling. The three vertices of the Sperner simplex which are
proven to exist through the MVT exists on each of the edges v13v14, v13v2 and v13v10 in a
subdomain of this simplex v5v9v10. For example the simplex surrounding the minimiser v1
is a possible Sperner simplex with vertices on the edges in every required direction.

Note that if the edge v13v14 was chosen instead of v13v10 then the local minimum of
the function would be outside the domain of the simplex with the Sperner labelling. This is
an important observation because it demonstrates that Theorem 3 cannot be used to further
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Fig. 9 Visual demonstration of the proof by finding simplices with Sperner labellings. The three circled
crosses are the (approximate) minimima of the objective function within the given bounds. The three possible
Sperner simplices are contained within the star domains of each minimiser st (v1), st (v7) and st (v13). v7 is
an example of simplices without complete Sperner labelings, the red shaded area around v7 is the bounded
domain wherein at least one local minimum exist

refine the location of the local minimum from the domain st (v13) using mechanisms of the
proof, it only states that at least one local minimum exists within st (v13).

The boundaries of st (v13) can be found using the 3−chain C13(H3) of simplices in
st (v13), recall that the directions of simplices higher than dimension 2 are undefined and so
the directions can be arbitrarily chosen

C13(H3) = v13v10v5 + v13v5v9 + v13v9v14 + v13v14v2 + v13v2v10

C13(H3) clearly forms a cycle, applying the boundary operator we find the faces defining
the bounds of the domain of st (vi) which in this case is the chain of edges with defined
direction

∂(C13(H3)) = −v10v5 + v5v9 − v9v14 + v14v2 + v2v10

thus ∂
(
∂(C(H3))

)
= ∅.

v7 = (1.15, 0.625) is an example of a minimiser that does not have all three required
directions for a Sperner labelling, the light red shaded area represents the area wherein a
local minimum can exist. For example on the lines x1 = 0 for x2 ∈ [0.625, 2.5] or x2 = 2.5
for x1 ∈ [0, 1.15] there will either exist a point p where the gradient ∇f(p) points in any
direction pointing towards [32π, 0) in which case and edge v13p exists that points in the
[π2 , π) direction and we have a simplex with a Sperner labelling. For example the dotted line
on Figure 9 with the Sperner simplex represented by blue shaded around v7. If such a point
does not exists then all points on those lines points in the [0, 32π) direction and so one or
more local minimum lies somewhere on the boundary which is within the defined area.

There have been several developments in the extension of this lemma which could prove
useful in applications extending the SHGO algorithm. One of the most interesting is by
De Loera et al. [7] where they proved the Atanassov conjecture [3] that for any polytope
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with N vertices there are N − n simplices that receive a complete set of Sperner labels.
Meunier [28] further extended this theorem and more recently Musin [31] extended the
theorems to a large class of manifolds with or without boundary. These theorems could
prove useful for extending the algorithm to make use of this information. More explicitly,
SHGO currently uses knowledge of the objective function evaluations, but only in a Boolean
sense (in the form of directed edges). The theorems byMeunier andMusin allow us to extend
Sperner’s lemma to a simplicial complex built in a (n+1)-dimensional non-Euclidean space.
This would allow the application of ideas from discrete differential geometry. For example
the Gauss-Bonnet theorem holds for discrete simplicial surfaces [23]. The Gauss-Bonnet
theorem provides a relation between the total Gaussian curvature and the Euler characteristic
of a surface. By simple summation of the angle defect around every vertex we can determine
the Euler characteristic of a continuous surface. As will be demonstrated in Section 5.4 the
simplicial complex used by SHGO is homeomorphic to complexes built on other topological
hypersurfaces. Therefore when using explicit coordinates of the expected homomorphism
the summation can be used to compare the error with the Euler characteristic which provides
a metric for how accurately the objective function surface has been sampled. In global
optimisation theory a simplicial complex built in this space can be used for approximating
local and global Lipschitz constants for an objective function while still retaining the ability
to detect locally convex sub-domains in the search space.

5.4 Invariance of the directed complex within a bounded rectangle

We now have a guarantee of finding stationary points in sub-domains near stationary points.
However, we would also like to ensure that SHGO does not generate more than oneminimiser
starting point per convex sub-domain. This can only be guaranteedwhen an objective function
surface is "adequately sampled". For black box functions there is noway to know if the number
and distribution of sampling points is adequate without more information (for example if the
number of local minima are known in the problem). However, it is an important property of
the algorithm that |M| will stop increasing with higher sampling after this point. First we
define an adequately sampled surface.

Definition 22 Consider a simplicial complex H built on an objective function f with a
compact feasible setΩ using Definitions 17 through 20. The surface is said to be adequately
sampled if there is one and only one true stationary point within every domain defined by
Theorem 3.

The remainder of this section is devoted to proving the following theorem which holds
in the case where Ω = [l,u]n.

Theorem 5 (Invariance of an adequately sampled simplicial complex H) For a given con-
tinuous objective function f that is adequately sampled by a sampling set of size N . If the
cardinality of the minimiser pool extracted from the directed simplex H is |M|. Then any
further increase of the sampling set N will not increase |M|.

Proof The proof relies on a homomorphism between the simplicial complex H constructed
in the bounded hyperrectangle Ω and the homology (mod 2) groups of a constructed surface
S on which we can invoke the invariance theorem.

Define the n-torus S0 from the compact, bounded hyperrectangle Ω by identification of
the opposite faces and all extreme vertices. Now for every strict local minimum point p ∈
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Ω puncture a hypersphere and after appropriate identification the resulting n-dimensional
manifold Sg is a connected g sum of g tori S := S0 #S1 # · · · #Sg−1 (g times)

Any triangulation K of the topological space S is homeomorphic to S, Hk(K) ∼=
Hk(S) ∀k ⊂ Z. Note that this homomorphism is for a mod 2 homology between a triangula-
tionK and the surface S and is thus undirected. A triangulation corresponding to all vertices
and faces of K can be directed according to Definition 17, Definition 18 and Definition 19
providing the directed simplicial complex H. By construction we have, for an adequately
sampled simplicial complex H, an equality which exists between the cardinality ofM and
the Betti numbers of S as |M| = h1 = rank(H1(S)) = rank(H1(K)). Here we invoke
the invariance theorem

Theorem 6 (Invariance theorem[17]) The homology groups associated with a triangulation
K of the a compact, connected surface S are independent of K. In other words, the groups
H0(K), H1(K) and H2(K) do not depend on the simplices, incidence coefficients, or
anything else arising from the choice of the particular triangulation K; they depend only on
the surface S itself.

The invariance theorem can be extended to higher dimensional triangulable spaces using
singular homology through the Eilenberg-Steenrod Axioms [9, 17]. As a direct consequence
any triangulation of S will produce the same homology groups for K.

Adding any new sampling point within the corresponding subdomains of st (vi) ∀i(vi ∈
M ⊆ H0) as defined in Theorem 3 will by definitions 17 through 20 need to be connected
directly to vi by a new edge or the triangulation is no longer a simplicial complex and thus
not increase |M| since only one vertex will be the new minimiser.

After adding any sampling point outside a domain st (vi) then, through the established
homomorphism, any construction of H will produce the same homology groups since
rank(H1(K)) remains unchanged and it is thus not possible for a new vertex to be wrongly
identified as a minimiser in the triangulation H.

This concludes the proof that any increase in N will not further increase |M|.

It is important to note that Theorem 5 is only applicable to complexes with adequate
sampling as defined, that is to say it is entirely possible that, in complexes with less that
adequate sampling, two starting minimiser elements ofM will converge to the same local
minimum. This flaw is inherent in the fact that there is insufficient information to completely
identify the minima of a surface (and could be overcome if some extra information about f
is known).

Theorem 3 and Theorem 5 also lead to the following corollary about an optimisation
problem:

Corollary 2 Consider any objective function f : Ω ⊆ Rn → R. Consider also a local
minimisation routine that is guaranteed to converge to a local minimum in the same lo-
cally convex domain as the starting point inputted to the algorithm. Alternatively the local
minimisation routine is guaranteed to converge to a point within a set of bounds (provided
by the boundary of the k−chain around st (vi), ∂

(
C(Hk)

)
, k = n + 1). If such a local

minimisation routine uses an element vi ∈ M as a starting point and the routine leads to a
minimum outside or on st (vi) and in addition the minimum is not contained in the set H0.
Then it can be concluded that either search space is not adequately sampled or f is not a
Lipschitz smooth function.
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Therefore according to Corollary 2 if the number of local minima are known, as in for
example phase equilibria problems, then we can extract valuable information about the
objective function. In particular it can be determined whether or not the objective function
is Lipschitz smooth. Alternatively if the function is known to be Lipschitz smooth then
Corollary 2 can be used to prove the sampling is insufficient when the condition is not met.
When this happens it is also now known that there are more local minima to be found, one
or more of which might possibly be the global minimum. Corollary 2 does not, however,
provide any guarantee that the sampling is sufficient when the conditions are met.

5.5 Sampling generation

Using the Sobol sequence sampling point generation proceeds in a similar way as that
described in Section 2.1. However, rather than only generating an arbitrary number of pre-
defined sampling points we will also consider heuristic methods starting with the minimum
amount of sampling points required to triangulate an n dimensional space. For example
start with the minimum amount of sampling points to construct an n−dimensional simplex
and continue sampling while continuously calculating the H1(H) homology groups of the
complex. Using the definitions described in this section the sampling is continued until the
growth rate of the approximated homology groups slows appreciably.

In this publication the Sobol sequenced sampling points are triangulated using Delaunay
triangulation as implemented in the SciPy library [22]. A major disadvantage to this trian-
gulation scheme is that it does not scale well to higher dimensions since it relies on solving
convex hull using the quickhull method developed by Barber and Dobkin [4]. There are
several possibilities for mitigating this problem. Since the Sobol sequence is deterministic
the triangulations can be calculated and stored in a database. For SHGO another possibility
whereby the convex hull does not need to be solved by using symmetry generated triangu-
lation was developed. Building on the initial n-cube triangulation developed by Paulavičius
and Žilinskas [34, 53] and using the symmetry groups Sn, n = {1, 2, 3, . . . ,n} to generate an
initial triangulation. Subsequent uniform sampling that ensures a symmetrical triangulation
is generated in the next generation of simplices. This is done by an ordering of edges and
using the cycle (123 . . . n− 1) to ensure that we always split every simplex by a hyperplane
that goes through a child vertex on the longest edge of simplex and every other vertex in
the parent simplex that does not have incidence on the edge. Figure 10 demonstrates the
symmetry of this sampling in n = 2 where the longest edge in the initial triangulation was
sampled. Here an iteration is defined as any generation of sub-triangulations that provides
a triangulation symmetrical to the initial triangulation. An implementation of this sampling
sequence is available at [10].

In this publication we will use both the Sobol and the hypercube triangulation sampling
sequences. Sobol provides a more direct comparison to the TGO algorithm while the second
sequence is more similar to the DISIMPL-v algorithm. We will refer to the different uses of
sampling sequences as SHGO-Sobol and SHGO-Simpl in the experimental results section
in Section 6

5.6 Theoretical comparison to the DISIMPL algorithm

The DISIMPL algorithm developed by Paulavičius and Žilinskas [33, 34, 36] is based on
spatial partitioning of the search space. DISIMPL-v in particular should have a similar initial
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Fig. 10 Triangulation of a unit hypercube shown in 2 dimensions for 4 iterations

complex as SHGO-Simpl for box problems since this algorithm samples on the vertices of the
simplicial complex (whileDISIMPL-c samples at the geometric centre of the simpliceswhich
is more appropriate for higher dimensional problems). The graph structure of DISIMPL-v
can thus be used to construct the directed complex H and the homological properties can
be calculated and applied. An example of one such application is given in the following
paragraph.

At every iteration of the DISIMPL algorithm potentially optimal simplices are selected
for refinement by considerations the Lipschitz properties of the optimisation problem. In
general a combination of promising simplices with good function evaluations (related to
local exploration of the search space) and simplices with larger hypervolumes (related to
global exploration of the search space). Gb-DISIMPL [36] is a very promising acceleration
technique accomplished by switching between a "global phase" and a "usual phase". The
global phase is focused on exploring simplices with larger hyper volumes and excludes
smaller simplices which are potentially optimal in the usual phase. This technique prevents
excessive evaluations near local minima as demonstrated in [36]. Local minima can put
a "drag" on the progress of refining the minimum because the algorithm selects many
neighbouring simplices that are slightly worse on the function values, but also slightly larger
in volume. A meta-parameter is used in Gb-DISIMPL to select the simplices to be excluded
in the global phase and was shown in [36] to be very efficient. However, using knowledge
from the directed complex ofH, the domain containing these simplices near the local minima
could also be identified more explicitly through a Sperner labelling if the function is known
to be Lipschitz smooth.
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5.7 Algorithm implementation

We consider two modes for the SHGO algorithm. In the first a finite number of sampling
pointsN are specified and sampling is continued until an Ω set of cardinalityN is produced
and no further sampling occurs. This method is demonstrated by Algorithm 2. The main
reason for this algorithm is to present a more direct comparison to TGO that can be used in
numerical experiments.

For the purposes of global optimisation and localminima explorationAlgorithm3 ismore
appropriate. By continuously calculating the H1(H) homology group several termination
criteria can be used to end the sampling. For example if the amount of local minima is
known the sampling can be terminated once |M| is large enough. Another example with
many possible heuristics is tracking the historical difference in |M| over |P| and terminating
sampling if |M| is unchanged after a certain increase in |P|. In optimisation problems where
the global minimum is known we can also use the stopping criteria such as the one defined
by [35].

pe = 100%×

{
min{F}−f∗

|f∗| , f∗ 6= 0

min{F}, f∗ = 0

Here min{F} is the minimum function evaluation obtained including values obtained
in the output of the local minimisation step as shown in the algorithm. Whatever termination
criterion is used it requires an inputH1(H) or min{F} and should output a Boolean, we will
refer to this function as TERM(H1(H),min{F}) in Algorithm 3. In the practical imple-
mentation of the algorithm the user can also specify a finite number of iterations and/or sam-
pling points. This functionality has been programmed into the TERM(H1(H),min{F})
function.

Open source python implementations of both of these algorithms are available and were
published under a MIT compatible license [10].

6 Experimental Results

6.1 Comparison to other solvers on problems with linear constraints

In this section we provide experimental comparisons on 22 linearly constrained problems
comparing the SHGO, TGO, Lc-DISIMPL [35], LGO [37], PSwarm [47] and DIRECT-L1
[12] algorithms.Note that the data for the Lc-DISIMPL, PSwarm andDIRECT-L1 algorithms
was taken from [35]. In [35] Paulavičius and Žilinskas used DIRECT-L1 with the 3 different
penalty parameters (p.p.). Due to spatial considerations only the best performing penalty
parameters for DIRECT-L1 are shown in the table in this study. The same percentage error of
pe = 0.01% used by [35] was also used in this publication. To provide a fair comparison of
TGO to SHGO and the other solvers the TGO algorithmwas modified to stop sampling when
it produced a minimiser that lead to the global minimum of the problem. Table 1 shows the
results. Here f.e. is the total number of objective function evaluations required to solve the
function and p.f.e. is the total number of penalty function evaluations. The PSwarm solver
was run 10 times for each test problem.

Note that SHGO-Simpl, SHGO-Sobol, and TGO are hybrid algorithms in the sense that
they combine a sampling step with a local minimisation procedure. The total number of
sampling evaluations performed in the local minimisation routines are also provided in Table
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Algorithm 2 SHGO finite sampling algorithm
1: procedure Initialisation
2: Input an objective function f , constraint functions g and variable bounds and [l,u]n.
3: InputN initial sampling points.
4: Define a sampling sequence that generates a set X of sampling points in the unit hypercube space

[0,1]n

5: end procedure
6: procedure Initial sampling
7: P = ∅
8: while |P| <N do
9: GenerateN − |P| sequential sampling points X ⊂ Rn

10: Stretch X over the lower and upper bounds [l,u]n
11: P = {Xi | g(Xi) ≥ 0,∀Xi ∈ X} ∪ P . (Find P in the feasible subset Ω by discarding any

points mapped outside the linear constraints g and adding to the current set of P .)
12: Set X = ∅
13: end while
14: Find F from the objective function f : P → F
15: end procedure
16: procedure Construct directed complexH
17: CalculateH from h : P → H
18: end procedure
19: procedure ConstructM
20: FindM from Definition 20.
21: end procedure
22: procedure Local minimisation
23: Calculate the approximate local minima of f using a local minimisation routine with the elements of
M as starting points. . These local minimisations can be performed in parallel.

24: end procedure
25: procedure Process return objects
26: Order the final outputs of the minima of f found in the local minimisation step to find the approximate

global minimum
27: outputf∗, x∗ . Here f∗, x∗ refer to the best objective function output found by the algorithm.
28: output A list of all the minima found in the local minimisation step.
29: end procedure

1. The number of global sampling points on each problem is the total number given in Table
1 minus the local function evaluations given in the brackets in the superscript c. Although
the selected local minimisation routine (SLSQP) does not use derivative informtation, on
certain problems another local minimisation routine might be more appropriate, which can
change the performance of the algorithm.

TheSHGO-Simpl, SHGO-Sobol andTGO(usingHenderson’s formula forkc) algorithms
were able to solve all 22 problems. The best results on each problem are bolded. The lowest
average number of function evaluations was achieved by SHGO-Simpl followed by SHGO-
Sobol and TGO. It can be observed that Lc-DISIMPL-v achieved a better performance
than any other algorithm for the horst-1 to horst-6, hs024, hs035, s232, s250 and bunnag2
problems. As noted in [35] the initial triangulation of Lc-DISIMPL-v evaluates the function
values at the vertices of the simplices and therefore for some of the tested problems the
solutions were found after initial triangulation on one of the vertices of the feasible region.
It is also possible to initiate SHGO with such an initial triangulation by definition the first
few vertices in X as the intercepts of the linear constraints in a similar way to [35] and then
continuing to add sampling points as normal.

Table 2 provides additional information for SHGO and TGO including the total number
of function evaluations required by the algorithm to solve the problem (f.e.), the number
of minimisers generated as starting points by the algorithm (nlmin), the number of unique
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Algorithm 3 SHGO homology group growth algorithm
1: procedure Initialisation
2: Input an objective function f , constraint functions g and variable bounds and [l,u]n.
3: InputN initial sampling points.
4: Define a sampling sequence that generates a set X of sampling points in the unit hypercube space

[0,1]n

5: Define the empty setME = ∅ of vertices evaluated by a local minimisation.
6: end procedure
7: while TERM(H1(H),min{F}) is False do
8: procedure Sampling
9: P = ∅
10: while |P| <N do
11: GenerateN − |P| sequential sampling points X ⊂ Rn

12: Stretch X over the lower and upper bounds [l,u]n
13: P = {Xi | g(Xi) ≥ 0,∀Xi ∈ X} ∪ P . (Find P in the feasible subset Ω by discarding

any points mapped outside the linear constraints g and adding to the current set of P .)
14: Set X = ∅
15: end while
16: Find F from the objective function f : P → F for any new points in P
17: end procedure
18: procedure Construct/append directed complexH
19: CalculateH from h : P → H . (IfH was already constructed new points in P are incorporated

into the triangulation.)
20: Calculate H1(H)
21: end procedure
22: procedure ConstructM
23: FindM from Definition 20.
24: end procedure
25: procedure Local minimisation
26: Calculate the approximate local minima of f using a local minimisation routine with the elements

ofM\ME as starting points. . Process the most promising points first.
27: ME =ME ∩M . This excludes the evaluation any element vi ∈M that is known to be the

only point that in the domain ∂st(vj) where vj is known to any point already used as a starting point in
Step 27. If any new vi ∈M not inME is known to be the only point ∂st(vj) it can also be excluded.

28: Add the function outputs of the local minimisation routine to F
29: end procedure
30: Find new value of TERM(H1)(H,min{F})
31: end while
32: procedure Process return objects
33: Order the final outputs of the minima of f found in the local minimisation step to find the approximate

global minimum
34: outputf∗, x∗ . Here f∗, x∗ refer to the best objective function output found by the algorithm.
35: output A list of all the minima found in the local minimisation step.
36: end procedure

local minima mapped by the algorithm (nulmin) and the total processing time (runtime) in
seconds.

It can be seen that neither of the SHGO algorithms produced more starting points
leading to the same local minima as predicted by the theory for adequately sampled function
surfaces. On the contrary TGO produced more than one starting point in the same locally
convex domain on some test problems which lead to extra function evaluations, producing a
poorer overall performance. While SHGO-Simpl had the lowest number of average function
evaluations, a higher processing run time is observed compared to the other 2 algorithms.
This can be explained by the fact the triangulation code for the sampling has not yet been
optimised which consumed most of the run time. SHGO-Sobol and TGO use the same
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sampling generation code and it is observed that SHGO-Sobol has a lower processing run
time as expected.

The source code used to produce these results including the scripts that run the test
benchmarking suite is publically available at [10]. The specifications of the system used to
run the test problems can also be found in [10].
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Table 2 Total and average performance over all 22 test problems.

f.e. nlmin nulmin runtime (s)
problem name

All shgo-simpl 1463 26 26 0.27294
shgo-sobol 1864 23 23 0.11225
tgo 2123 29 25 0.093607

Average shgo-simplicial 65 1 1 0.012852
shgo-sobol 88 1 1 0.004144
tgo 100 1 1 0.004542

6.2 Function evaluations and comparison to other open source global optimisation
algorithms

In this section we present numerical experiments comparing the SHGO and TGO algorithms
with the SciPy implementations [22] of basinhopping (BH) [27, 48, 50, 51] and differential
evolution (DE) [42]. These algorithms were chosen both because the open source versions
are readily available in the SciPy project and because BH is commonly used in energy
surface optimisations [49] from which the motivation for developing SHGO grew. DE has
also been applied in optimising Gibbs energy surfaces for phase equilibria calculations [52].
The optimisation problems in Appendix ??were selected from the SciPy global optimisation
benchmarking test suite [1, 13, 20, 29, 30, 32]. The test suite contains multi-modal problems
with box constraints, they are described in detail in [13]. We again used the stopping criteria
pe = 0.01% for SHGO and TGO. For the stochastic algorithms (BH and DE) the starting
points provided by the test suite were used. For every test the algorithm was terminated
if the global minimum was not found after 10 minutes of processing time and the test
was flagged as a fail. For comparisons we used normalised performance profiles [8] using
function evaluations and processing time as performance criteria. In total 180 test problems
were used.

From Fig. 11 it can be observed that for this problem set SHGO-Sobol was the best
performing algorithm, followed closely by TGO and SHGO-Simpl. Fig. 12 provides a clearer
comparison between these three algorithms. While the performance of all 3 algorithms are
comparable, SHGO-Sobol tends to outperform TGO, solving more problems for a given
number of function evaluations. This is expected since, for the same sampling point sequence,
TGO produced more than one starting point in the same locally convex domain on some test
problems which leads to extra function evaluations. In total TGO produced 403 minima of
which only 393 minima were unique while all of the 225 minima produced by SHGO-Sobol
were unique. SHGO-Simpl produced 238 of which all 238 were unique. It is apparent that
SHGO-Simpl performed worse compared to the other sampling methods despite a better
performance on the test problem set with linear constraints. There are two reasons for this
result. First of all the uniformity properties of the Sobol sequence hold only for hypercubes,
therefore it is lost for geometries defined by the search spaces inside linear constraints.
Secondly the current code for the triangulation of the simplex cannot add only one sampling
point per iteration, but must split all the simplices until the symmetry of the entire complex
is restored. This leads to a much higher number of function evaluations during the sampling
step of the algorithm.

The Table in [10] shows the raw numerical results. Note that, unlike the data in perfor-
mance profiles, failed test runs did not get set to the worst case performance criteria by any
solver (in order to preserve the raw data). Therefore the total and average function evalua-
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Fig. 12 Performance profiles zoomed in to the range of f.e. = [0, 1000] function evaluations and [0, 0.4]
seconds run time

tions and processing times are misleading. The Table is mostly useful for comparisons on a
particular test problem as well as comparing the total number of minima and unique minima
found.

6.3 Invariance and optimum minimiser pool

The following 4 optimisation test problems were used to demonstrate the applications of
Theorem 5 and to show the minimiser pool growth compared to TGO over a large number of
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sampling points. The results plotted in Figure 13 shows that SHGO performed as expected
with the minimiser pool staying at the optimum cardinality to map all the local minima
once the sampling is adequate as well as the shortcomings of the TGO especially in the
higher dimensional test problems where the the minimiser pool tends to grow rapidly with
the number sampling points N .

The Ursem01 function for two dimensions is defined as follows [13]

f(x) = − sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1, x ∈ Ω = [0, 9]× [−2, 2] (14)

The Paraboloid function for six dimensions is defined as follows

f(x) =
6∑
i=1

x2i , x ∈ Ω = [−10, 10]6 (15)

The Bird function for two dimensions is defined as follows [13]

f(x) = (x1 − x2)2 + e[1−sin(x1)]
2

cos (x2) + e[1−cos(x2)]
2

sin (x1) ,

x ∈ Ω = [−2π, 2π]2 (16)

The Schwefel01 function for six dimensions is defined as follows [13]

f(x) =

(
n∑
i=1

x2i

)√π
, x ∈ Ω = [−100, 100]6 (17)

7 Concluding remarks

The SHGO algorithm developed here shows promising properties and performance. On
problems with linear constraints it was shown to provide competitive results to the TGO, Lc-
DISIMPL, PSwarm and DIRECT-L1 algorithms. The use of a simplicial complex provides
access to a wealth of tools from combinatorial topology and the growing field of computa-
tional homology. We are hopeful that these will drive further extensions and development
of the algorithm. Many challenges remain such as finding the most appropriate sampling
sequences for different classes of problems and finding computer resource efficient trian-
gulation schemes. Due to the useful characterisations of objective function hypersurfaces
provided by the homology groups of the simplicial complex SHGO allows an optimisa-
tion practitioner with a useful visual tool for understanding and efficiently solving higher
dimensional black and grey box optimisation problems.

The main initial driving force behind the development of this algorithm grew out of a
need for efficient, deterministic and reliable global optimisation methods for applications in
phase equilibria modelling and calculations. However, the SHGO algorithm described here
is appropriate for solving a wider class of global optimisation problems both those where
mapping all the local minima is of interest and where only the global optimum is needed. It is
especially appropriate for computationally expensive black and grey box functions common
in science and engineering as described for example by Shan and Wang [39].

Some key features of SHGO are that when the optimisation search space is adequately
sampled and enough information is available to determine that all local minima have been
mapped it is guaranteed that only one starting point for every locally convex domain will be
produced by the algorithm. Note that in optimisation problems where the number of local
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Fig. 13 (a) The minimiser pool growth of the TGO and SHGO algorithms for the smooth objective function
described in Example 3 and restated in Equation (14) for convenience, the SHGO never increases above the
optimum of |M| = 3, for TGO 3 different values of the k parameter are shown. (b) Theminimiser pool growth
for the six dimensional Paraboloid problem defined by Equation (15), note that even though the problem has
only one minimum, the minimiser pool for TGO set at k = kc tends to increase for increasing sampling points
N . In general this problem is exacerbated in higher dimensions while SHGO stays at the optimum |M| = 1.
The TGO minimiser pool for k = 3 and k = 4 are not shown here because the minimiser pool grows too
rapidly. (c) The minimiser pool growth for the two dimensional Bird problem defined by Equation (16), an
important observation here is that |M| is higher than optimum for SHGO before the sampling is adequate
as defined by Equation (5) which happens at the after there are N = 1722 Sobol sequenced points after
which |M| stays at the optimum value equal to the number of unique local minima with increasing N . (d)
The minimiser pool growth for the six dimensional Schwefel01 problem defined by Equation (17), here again
|M| for TGO set at kc grows rapidly withN while |M| for SHGO stays constant at the optimum.

minima is known, the sampling can stop and the local minimisation step started without
superfluous function evaluations while for optimisation problems with an unknown number
of local minima is unknown (and thus we can never truly know if all local minima has been
found for any finite number of sampling) the guarantee still holds that SHGOwill not produce
superfluous starting points that lead to the same stationary points. In addition because the
homology groups can be calculated as sampling progresses an optimisation practitioner can
both visualise the extent of the optimisation problem’s multi-modality and use intelligent
stopping criteria for the sampling stage.
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