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Introduction



Introduction

• Global optimisation of black-box functions

• Developed for applications on free energy (hyper-)surface problems

common in chemical engineering and many other fields, examples:

- Phase equilibria (chemical engineering)

- Inorganic molecular structures (computational chemistry)

- Protein folding (computational biochemistry)

- Time independent Hamiltonian systems (quantum mechanics)

- Equilibrium in arbitrary force models (ex. stable orbits)

• Information extracted by shgo in the limits:

- Finds the global minimum (ex. stable equilibrium, ”best” solutions)

- Finds all other solutions (ex. corresponding to quasi-equilibrium

states that have physical meaning)
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Example of a free energy surface (adapted from [?])
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Objective function statement

and nomenclature



Objective function statement i

Consider a general optimisation problem of the form

minimize f (x), by varying x ∈ Rn

subject to gi (x) ≥ 0, ∀i = 1, . . . ,m

hj(x) = 0, ∀j = 1, . . . , p

• The objective function maps an n-dimensional real space to a scalar

value f : Rn → R

• The variables x are assumed to be bounded

• gi (x) are the inequality constraints g : [l,u]n → Rm

• hj(x) are the equality constraints h : [l,u]n → Rj

• It is assumed that the objective function has a finite number of local

minima
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Objective function statement ii

for example if lower and upper bounds li and ui are implemented for each

variable then we have an initially defined hyperrectangle

x ∈ Ω ⊆ [l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rn (1)

where Ω is the limited feasible subset excluding points outside the

bounds and constraints.

Ω = {x ∈ [l,u]n | gi (x) ≥ 0,∀i = 1, . . . ,m} (2)

When the constraints in g are linear the set Ω is always a compact space.
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A brief one-dimensional

motivation



A brief one-dimensional motivation i

Derivative free optimisation:

• f and g are expensive black-box functions

• No derivative information available or difficult to compute

• Common strategies in global optimisation hit the maps f and g with

sampling points and use the resulting geometric information of the

surfaces

• Many popular approaches are based on some kind of statistical or

geometric reasoning or even more simply a multi-start routine that

simply passes any promising sampling points to a local minimization

routine
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A brief one-dimensional motivation ii
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Figure 1: A 1-dimensional objective function surface f : R1 → R
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A brief one-dimensional motivation iii
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Figure 2: Sampling points on the surface found by hitting the map f : R1 → R
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A brief one-dimensional motivation iv

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x1

−0.2

0.0

0.2

0.4

0.6

0.8

f

f (p1)

f (p2)

f (p3)

f (p4)

f (p5)

f (p6)

Figure 3: The information available to an algorithm (not very clear!)
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A brief one-dimensional motivation v
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Figure 4: (Incomplete) geometric information found by building edges
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A brief one-dimensional motivation vi
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Figure 5: Directing the edges deduces even more information
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A brief one-dimensional motivation vii
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Figure 6: This geometric structure leaves us with a clearer picture
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A brief one-dimensional motivation viii

• The number of local minima is at least 3 (by the mean value

theorem)

• If we had just one fewer sampling point it would be impossible to

deduce that there are 3 local minima

• On the other had if we had many more sampling points the number

of minimisers would still only be 3 (a geometric invariance!)

• We want an idea of how many sampling points we need to find all

solutions

• We would also like to know if these solutions are close together or

far apart etc.

• We want to identify regions where it is proven we will find solutions

(locally convex sub-domains that can be used in

local-minimisation)

• Finally we want to extend these ideas to higher dimensions
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Onward to the second dimension!



2-dimensional surfaces i

Example

Consider a more complex optimisation problem in two dimensions

min f , x ∈ [0, 10]× [0, 10]

where

f (x) = − sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1

Subject to the following non-linear constraints:

(x1 − 5)2 + (x2 − 5)2 + 5
√
x1x2 − 29 ≥ 0

(x1 − 6)4 − x2 + 2 ≥ 0

9− x2 ≥ 0
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2-dimensional surfaces ii
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Figure 7: 3-dimensional surface plot of the example objective function
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2-dimensional surfaces iii
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Figure 8: 3-dimensional surface plot of the example constraint functions
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2-dimensional surfaces iv
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Figure 9: Contour plot of the problem, the shaded region violates the

constraints, a set of random sampling points has been plotted on the surface
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2-dimensional surfaces v

Many challenges are apparent:

• Already we can no longer use the simple graph structures from the

1-dimensional example since they do not cover the entire volume of

2-D space between points (also known as vertices in graph theory)

• Curse of dimensionality: when the dimensionality increases, the

volume of the space increases so fast (O(2d)) that the available

geometric data become sparse for the same number of sampling

points

• Intuitively most algorithms utilising some kind multi-start routine

will pass several sampling points that lead to the same solution

several times

17



Understanding the problem



Understanding the problem i

• We can no longer track the invariant geometric features since the

sampling points do not connect in such a way that it covers the full

volume of space between points in the same way as the

one-dimensional case

• We no longer have rigorous proofs of regions containing solutions

(locally convex sub-domains)

• We can keep ”guessing” and using multi-start routines, but we

would potentially need thousands of sampling points every time even

on very simple problems to cover the vast volume of the search

(hyper-)space

• In addition, many local minimisations will be wasted only to find the

same solution, this problem is exacerbated in even higher dimensions
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Understanding the problem

means understanding hyperspace



What do we know about hyperspace? How do

we use this knowledge?
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Understanding hyperspace through algebraic topology i

• Topology is the study of properties of geometric objects that endure

when the objects are subjected to continuous transformations

(”rubber sheet geometry”)

• Many of these properties are readily extendable to arbitrarily

high-dimensions

• In order to compute these properties, we need something to count

(an algebra!)

• The field of algebraic topology studies the various ways in which we

can use abstract algebra to study topological spaces
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Topology is preserved under continuous transformations Link
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Topology is preserved under continuous transformations

Many surfaces have homeomorphic topological properties:

In 2-dimensional space the classification theorem proves that all possible

closed or bounded surfaces are homeomorphic to the sphere, or a

connected sum of tori or a connected sum of projective planes.
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Topological surfaces and their plane models i

The Möbius band and the annulus

∼=

∼=
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Topological surfaces and their plane models ii

The torus and the Klein bottle

∼=

∼=
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Topological surfaces and their plane models iii

The real projective plane

∼= ∼=
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Nomenclature for developing a

simplicial homology



Nomenclature for developing a simplicial homology i

In the development of shgo we require several concepts from algebraic

and combinatorial topology [?, ?]. We will start with the basic building

blocks of a simplicial complex:

Definition

A k-simplex is a set of n + 1 vertices in a convex polyhedron of

dimension n. Formally if the n + 1 points are the n + 1 standard n + 1

basis vectors for R(n+1). Then the n-dimensional k-simplex is the set

Sn =

{
(t1, . . . , tn+1) ∈ Rn+1 |

n+1∑
1

tn+1 = 1, ti ≥ 0

}
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Nomenclature for developing a simplicial homology ii

Figure 10: A 0-simplex (point), 1-simplex (edge), 2-simplex (triangle) and a

3-simplex (tetrahedron) (Figure adapted from [?])
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Nomenclature for developing a simplicial homology iii

Definition

A simplicial complex H is a set H0 of vertices together with sets Hn

of n-simplices, which are (n + 1)-element subsets of H0. The only

requirement is that each (k + 1)-elements subset of the vertices of an

n-simplex in Hn is a k-simplex, in Hk .
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Nomenclature for developing a simplicial homology iv

Definition

A k-chain is a union of simplices.

Examples:

0-chain

A union of vertices.

1-chain

A union of edges.

2-chain

A union of triangles.
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Nomenclature for developing a simplicial homology v

A 0-chain:
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Nomenclature for developing a simplicial homology vi

A 1-chain:
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Nomenclature for developing a simplicial homology vii

A 2-chain:
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Nomenclature for developing a simplicial homology viii

• C (Hk) denotes a k−chain of k−simplices.

• A vertex in H0 is denoted by vi .

• If vi and vj are two endpoints of a directed 1-simplex in H1 from vi
to vj then the symbol vivj represents the 1-simplex

• This 1-simplex is bounded by the 0−chain ∂ (vivj) = vj − vi

• A 2-simplex consisting of three vertices vi , vj and vk directed as

vivjvk has the boundary of directed edges

∂ (vivjvj) = vivj + vjvk + vjvi .
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Nomenclature for developing a simplicial homology ix

A directed simplicial complex allows us to build an integral homology:
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Nomenclature for developing a simplicial homology x

A directed 2-simplex in the directed simplicial complex

v1

v2

v3
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Nomenclature for developing a simplicial homology xi

The boundary operator acting on a directed simplex the edges of the

directed 2-simplex: ∂ (v1v2v3) = v1v3 − v3v2 − v2v1.

v1

v2

v3
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Nomenclature for developing a simplicial homology xii

Note that in the mod 2 homology the 1-chain v1v3 + v3v2 + v2v1 forms a

cycle and that

∂ (v1v3 + v3v2 + v2v1) = (v3 − v1) + (v2 − v3) + (v1 − v2) = ∅

v1

v2

v3
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Nomenclature for developing a simplicial homology xiii

N.B.

In the directed integral homology we have

∂ (v1v3 − v3v2 − v2v1) = (v3 − v1)− (v2 − v3)− (v1 − v2) which

contains additional information about the path.

This is just one example of the trade off between computational

complexity and the information retained when using a mod 2

homology vs. a directed integral homology. For example mod 2

homologies fail to distinguish non-orientable surfaces from

orientable (ex. klein bottle is non-orientable while a torus is

orientable, but they have the same algebraic groups in a mod 2

homology).

In this study we will utilise both these homologies.
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Nomenclature for developing a simplicial homology xiv

Example

The directed simplicial complex on slide 21 is homologous to a torus.

The chain complex has a non-zero 2-cycle by chaining all the

2-simplices ∂
(∑8

i H2
i

)
= 0. The Klein bottle has no such cycle.
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Nomenclature for developing a simplicial homology xv

Definition

The star of a vertex vi , written st (vi ), is the set of points Q such that

every simplex containing Q contains vi .

The k−chain C (Hk), k = n + 1 of simplices in st (vi ) forms a boundary

cycle ∂(C (Hn+1)) with ∂
(
∂(C (Hn+1))

)
= ∅. The faces of ∂(Hn+1) are

the bounds of the domain defined by st (vi ).
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Nomenclature for developing a simplicial homology xvi

The domain defined by st (vi ):

vi
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Nomenclature for developing a simplicial homology xvii

The boundary ∂ (st (vi )) = v2v3 + v3v5 − v5v4 − v4v2:

vi
v2

v3

v4

v5
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Applying the simplicial homology

• Use simplicial complexes to extract information about the objective

function (hyper-)surface using:

- Simplicial integral homology theory

- Discrete exterior calculus

- Combinatorial and algebraic topology

• Algebraic topology theory is applied to provide rigorous convergence

properties and higher performance properties

• To our knowledge, shgo is the first optimisation algorithm to make

use of a homology theory (an algebraic topology theory about

invariant geometric structures)

• Homology groups computed from sampling points on the

hypersurface of objective functions allow us to deduce geometric

features of the hypersurface that we can’t visualize (a hypersurface

has a dimension higher than 3)
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Simplicial homology global

optimisation



shgo: summary i

The algorithm itself consists of four major steps which will be described

in detail:

1. Uniform sampling point generation of N vertices in the search space

within the bounded and constrained subspace of Ω from which the

0−chains of H0 are constructed

2. Construction of the directed simplicial complex H by triangulation of

the vertices h : P → H

3. Construction of the minimiser pool M⊂ H0 by repeated application

of Sperner’s lemma

4. Local minimisation using the starting points defined in M

43



Computing the homology groups

of hypersurfaces



How do we compute the homology group of

an optimisation problem?
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Overview: from Lipschitz surfaces to homology groups and the

solution(s) of optimisation problems

Hi (H),Hi (S) Invariance

f H S f ∗, x∗

{x|∀xi ≤ ∂C (Hk)(Hi (x) ≥ 0)} ∇f (X) = 0̄

h◦f :P→H

Sperner ∂Ci (H)

H∼=K

k:K→S

Simplicial homology

Eilenberg-Steenrod Axioms[1]

Finite cardinality

DEC[2]

MVT[3]

∀i(Hi (H)∼=Hi (S))

Sets of solutions

1. [?] , 2. Discrete exterior calculus , 3. (Discrete) Mean Value Theorem 44



Simplicial homology global

optimisation: h : P → H



shgo: h : P → H i

Hi (H),Hi (S) Invariance

f H S f ∗, x∗

{x|∀xi ≤ ∂C (Hk)(Hi (x) ≥ 0)} ∇f (X) = 0̄

h◦f :P→H

Sperner ∂Ci (H)

H∼=K

k:K→S

Simplicial homology

Eilenberg-Steenrod Axioms

Finite cardinality

DEC

MVT

∀i(Hi (H)∼=Hi (S))

Sets of solutions
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shgo: h : P → H ii

• We define the constructions used to build the simplicial complex on

the hypersurface f from which we compute the homology groups

• H0 := P is the set of all vertices of H built from the set of feasible

sampling points P = {x ∈ X | g(x) ≥ 0}
• The simplicial complex H is constructed by a triangulation

connecting every vertex in H0

• The set H1 is constructed by directing every edge

• The edge is directed as vivj from vi to vj iff f (vi ) < f (vj) so that

∂ (vivj) = vj − vi

• Similarly an edge is directed as vjvi from vj to vi iff f (vi ) > f (vj) so

that ∂ (vjvi ) = vi − vj

• We let the higher dimensional simplices of Hk , k = 2, 3, . . . n + 1 be

directed in any arbitrary direction which completes the construction

of the complex h : P → H
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shgo: h : P → H iii

We can now use H to find the minimiser pool for the local minimisation

starting points used by the algorithm:

Definition

A vertex vi is a minimiser iff every edge connected to vi is directed

away from vi , that is ∂ (vivj) = (vj 6=i − vi ) ∨ 0 ∀vj 6=i ∈ H0. The

minimiser pool M is the set of all minimisers.

Example

The Ursem01 function for two dimensions is defined as follows [?]

min f , x ∈ Ω = [0, 9]× [−2.5, 2.5]

f (x) = − sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1
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shgo: h : P → H iv
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Figure 11: 3-dimensional plot of the Ursem01 function
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shgo: h : P → H v
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Figure 12: A directed complex H forming a simplicial approximation of f ,

three minimiser vertices M = {v1, v7, v13} and the shaded domain st (v1)
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Simplicial homology global

optimisation: locally convex

sub-domains



shgo: locally convex sub-domains i

Hi (H),Hi (S) Invariance

f H S f ∗, x∗

{x|∀xi ≤ ∂C (Hk)(Hi (x) ≥ 0)} ∇f (X) = 0̄

h◦f :P→H

Sperner ∂Ci (H)

H∼=K

k:K→S

Simplicial homology

Eilenberg-Steenrod Axioms

Finite cardinality

DEC

MVT

∀i(Hi (H)∼=Hi (S))

Sets of solutions
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shgo: locally convex sub-domains ii

• We want to find all the solutions of the problem

• The shgo algorithm finds sub-domains wherein a stationary point is

guaranteed to be found

• Both these starting points and their domains allow us to find

accurate solutions more easily

Theorem

(Stationary point in a minimiser star domain) Given a minimiser

vi ∈M ⊆ H0 on the surface of a continuous objective function f with

a compact bounded domain in Rn and range R, there exists at least one

stationary point of f within the domain defined by st (vi ).
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shgo: locally convex sub-domains iii

Overview:

• Find simplices with Sperner labels where each label represents a

different n + 1 label in every vector direction of the gradient vector

field ∇f of f

• Of the n + 1 Cartesian directions we require only a vector pointing

towards a section defined by n + 1 hyperplane cuts

• In a sense we extend the classical Brouwer’s fixed point theorem [?]

found in for example [?, p. 40] to optimisation problems with

arbitrary constraints

Theorem

(Sperner’s lemma [?]) Every Sperner labelling of a triangulation of a

n-dimensional simplex contains a cell labelled with a complete set of

labels: 1,2, . . . , n+1.

52



shgo: locally convex sub-domains iv

A Sperner labelling, every vertex of the n-simplex is labelled with a set of

labels 1, 2, . . . , n + 1. Any vertices on the boundary (n − 1)-simplices of

the n-simplex may only contain the labels of its boundary vertices

1 2

1
1

1
1

1 2

3

3

3

3

3

3

2

2

2
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shgo: locally convex sub-domains v

• The edge 13 may only contain vertices labelled either 1 or 3

• The edge 12 may only contain vertices labelled either 1 or 2

• The remainer of vertices inside the sub-triangulation may receive any

arbitrary label in the set 1, 2, . . . , n + 1
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shgo: locally convex sub-domains vi

For example consider a vector field within a simplex. We may be

interested in finding critical points where the vector field is stationary

V (P) = 0 as in the proof of Brouwer’s fixed point theorem:
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shgo: locally convex sub-domains vii

We can devide the directions and assign a label to each of the vertices.

Sperner’s lemma gaurantees that there will be at least one

sub-triangulation with the full set of labels:

1 2

1
1

1
1

1 2

3

3

3

3

3

3

2

2

2
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shgo: locally convex sub-domains viii

Example

It is proven that any simplex with a Sperner labelling must contain a

sub-triangulation with another simplex that contains a Sperner

labelling. Start by assigning every possible vector direction to a label.

Then a simplex from the sub-triangulation must contain another

sub-triangulation containing a Sperner simplex and so on until the

sequence of sub-simplices produce a critical point.

Brouwer used as a practical example in 3-dimensional space the fluid

vector field of a coffee. No matter how vigorously you stir your

coffee, it is proven there is at least one point where the coffee

remains stationary at any given time.
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shgo: locally convex sub-domains ix

On any gradient vector field, we can find sub-divisions containing Sperner

simplices by sampling the surface (figure adapted from Rhino docs Link )

58
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shgo: locally convex sub-domains x

Possible Sperner simplices around domain v7, domain v1 and v13
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shgo: locally convex sub-domains xi

The domain ∂(v13) cannot be further refined by the theorem
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shgo: locally convex sub-domains xii Link
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Simplicial homology global

optimisation: invariance



shgo: invariance i

Hi (H),Hi (S) Invariance

f H S f ∗, x∗

{x|∀xi ≤ ∂C (Hk)(Hi (x) ≥ 0)} ∇f (X) = 0̄

h◦f :P→H

Sperner ∂Ci (H)

H∼=K

k:K→S

Simplicial homology

Eilenberg-Steenrod Axioms

Finite cardinality

DEC

MVT

∀i(Hi (H)∼=Hi (S))

Sets of solutions
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shgo: invariance ii

• For black box functions there is no way to know if the number and

distribution of sampling points is adequate to find all the solutions

without more information (for example if the number of local

minima are known in the problem)

• However, we would still like to ensure that we don’t ”over sample”

too much or waste time finding the same solution to the problem

(all of which cost computational resources)

• First, the compact invariance theorem proves that this never

happens in a compact space and in addition the algorithm converges

to all solutions of the problem

• The proof relies on a homomorphism between the simplicial complex

H constructed in a compact space and the homology (mod 2)

groups of a constructed surface Sg and its triangulation K (with

Hk(K) ∼= Hk(S) ∀k ⊂ Z) on its surface on which we can invoke the

invariance theorem
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shgo: invariance iii

Construction of Sg : Start by identifying a minimizer point in the

H1 (∼= K1) graph
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shgo: invariance iv

By construction, our initial complex exists on the (hyper-)surface of an

n-dimensional torus S0 such that the rest of K1 is connected and compact
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shgo: invariance v

We puncture a hypersphere at the minimiser point and identify the

resulting edges (or (n − 1)-simplices in higher dimensional problems)
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shgo: invariance vi

Shrink (a topoligical (ie continuous) transformation) the remainder of the

simplicial complex to the faces and vertices of our (hyper-)plane model
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shgo: invariance vii

Make the appropriate identifications for S0 and S1

v1v1

v1 v1 v2 v2

v2v2
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shgo: invariance viii

Glue the indentified and connected face z (a (n − 1)-simplex) that

resulted from the hypersphere puncture
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shgo: invariance ix

The other faces (ie (n − 1)-simplices) are connected in the usual way for

tori constructions)
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shgo: invariance x

The resulting (hyper-)surface S = S0 #S1
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shgo: invariance xi

We can repeat the process with S0 #S1 for a new minimiser point and

corresponding hypersurface S2 without loss of generality
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shgo: invariance xii

S = S0 #S1#S2
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shgo: invariance xiii

Repeat this process for every minimiser point in the set M

Sg := S0 #S1 # · · · #Sg−1 (g times)
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shgo: invariance xiv

• In homology thoery a theorem known as the Invariance Theorem can

be extended to higher dimensional triangulable spaces using singular

homology through the famous Eilenberg-Steenrod Axioms [?, ?]

• As a direct consequence any triangulation of Sg will produce the

same homology groups for K
• Adding any new sampling point will produce the same homology

groups since rank(H1(K)) (the ”number of holes in Sg”) remains

unchanged and it is thus not possible for a new vertex to be wrongly

identified as a minimiser in the triangulation H

N.B.

Any further refinement in the simplicial complex by further

sampling does not increase the number of locally convex

sub-domains in a compact space!
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shgo: invariance xv

N

N

∼=

∼=

Figure 13: Refining the simplicial complex K built on the connected g sum of

g tori Sg does not change the Betti numbers of the surface (also related to the

Euler characteristic)
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shgo: invariance xvi
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Figure 14: Further refinement of the simplicial complex from the example

problem doesn’t increase the number of locally convex sub-domains extracted

by shgo because of the homomorphims between the homology groups of H and

K
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shgo: invariance xvii
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Figure 15: After increasing the number of sampling points the number of

locally convex sub-domains from the example problem are still 3, however, the

boundaries of the star domains have been further refined
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shgo: invariance xviii

• shgo is proven to have a stronger invariance and convergence in

the case where the constraints g are non-linear

• In addition we allow the objective function f to be non-continuous

and non-linear
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shgo: invariance xix
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Figure 16: Simplicial sampling by sub-triangulation of hyper-rectangles
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shgo: invariance xx

Example

We expand the bounds of the Ursem01 function for two dimensions [?]

min f , x ∈ [0, 10]× [0, 10]

Subject to the following non-linear constraints:

(x1 − 5)2 + (x2 − 5)2 + 5
√
x1x2 − 29 ≥ 0

(x1 − 6)4 − x2 + 2 ≥ 0

9− x2 ≥ 0

f (x) = − sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1
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shgo: invariance xxi
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Figure 17: 3-dimensional plot of the Ursem01 function with expanded bounds
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shgo: invariance xxii

First consider H without the non-linear bounds, here |M| = 12:
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shgo: invariance xxiii

After applying the non-linear version of h, the non-linear bounds produce

the following disconnected simplicial complexes:
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shgo: invariance xxiv

We use the fact that for abelian homology groups the rank is additive

over arbitrary direct sums rank
(⊕

i∈I H1(Ki)
)

=
∑

i∈I rank(H1(Ki)):

∼=

∼=

∼=

+

+
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But why?
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Simplicial homology global

optimisation: algorithm



shgo: algorithm i

Hi (H),Hi (S) Invariance

f H S f ∗, x∗

{x|∀xi ≤ ∂C (Hk)(Hi (x) ≥ 0)} ∇f (X) = 0̄

h◦f :P→H

Sperner ∂Ci (H)

H∼=K

k:K→S

Simplicial homology

Eilenberg-Steenrod Axioms

Finite cardinality

DEC

MVT

∀i(Hi (H)∼=Hi (S))

Sets of solutions
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shgo: algorithm ii

1: procedure Initialisation

2: Input an objective function f , constraint functions g and variable

bounds and [l,u]n.

3: Input N initial sampling points.

4: Define a sampling sequence that generates a set X of sampling

points in the unit hypercube space [0, 1]n

5: Define the empty set ME = ∅ of vertices evaluated by a local

minimisation.

6: end procedure

7: while TERM(H1(H),min{F}) is False do

8: procedure Sampling

9: P = ∅
10: while |P| < N do

11: Generate N − |P| sequential sampling points X ⊂ Rn

12: Stretch X over the lower and upper bounds [l,u]n
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shgo: algorithm iii

13: P = {Xi | g(Xi ) ≥ 0,∀Xi ∈ X} ∪ P . (Find P in the

feasible subset Ω by discarding any points mapped outside the linear

constraints g and adding to the current set of P.)

14: Set X = ∅
15: end while

16: Find F from the objective function f : P → F for any new

points in P
17: end procedure

18: procedure Construct/append directed complex H
19: Calculate H from h : P → H . (If H was already constructed

new points in P are incorporated into the triangulation.)

20: Calculate H1(H)

21: end procedure

22: procedure Construct M
23: Find M from the definitions of h.
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shgo: algorithm iv

24: end procedure

25: procedure Local minimisation

26: Calculate the approximate local minima of f using a local

minimisation routine with the elements of M\ME as starting

points. . Process the most promising points first.

27: ME =ME ∩M . This excludes the evaluation any element

vi ∈M that is known to be the only point that in the domain

∂st(vj) where vj is known to any point already used as a starting

point in Step 27. If any new vi ∈M not in ME is known to be the

only point ∂st(vj) it can also be excluded.

28: Add the function outputs of the local minimisation routine to

F
29: end procedure

30: Find new value of TERM(H1)(H,min{F})
31: end while
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shgo: algorithm v

32: procedure Process return objects

33: Order the final outputs of the minima of f found in the local

minimisation step to find the approximate global minimum.

34: end procedure

35:

36: return the approximate global minimum and a list of all the minima

found in the local minimisation step.
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Properties

Properties of shgo:

• Convergence to a global minimum assured

• Allows for non-linear constraints in the problem statement

• Extracts all the minima in the limit of an adequately sampled search

space (ie attempts to find all the (quasi-)equilibrium solutions)

• Progress can be tracked after every iteration through the calculated

homology groups

• Competitive performance compared to state of the art black-box

solvers

• All of the above properties hold for non-continuous functions with

non-linear constraints assuming the search space contains any

sub-spaces that are continuous and convex
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Experimental results



Open-source black-box algorithms i

• Here we compare shgo with the following algorithms:

- topographical global optimization (TGO) [?]

- basinhopping (BH) [?, ?, ?, ?]

- differential evolution (DE) [?]

• BH and DE are readily available in the SciPy project [?]

• BH is commonly used in energy surface optimisations [?]

• DE has also been applied in optimising Gibbs free energy surfaces for

phase equilibria calculations [?]

• SciPy global optimisation benchmarking test suite [?, ?, ?, ?, ?, ?]

• The test suite contains multi-modal problems with box constraints,

they are described in detail in

http://infinity77.net/global_optimization/ Link
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Open-source black-box algorithms ii

• The stochastic algorithms (BH and DE) used the starting points

provided by the test suite

• Stopping criteria pe = 0.01%

• For every test the algorithm was terminated if the global minimum

was not found after 10 minutes of processing time and the test was

flagged as a fail

• For comparisons we used normalised performance profiles [?] using

function evaluations and processing time as performance criteria

• In total 180 test problems were used

93



Open-source black-box algorithms iii
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Figure 18: Performance profiles for SHGO, TGO, DE and BH
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Open-source black-box algorithms iv
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Figure 19: Performance profiles with ranges f.e. = [0, 1000] and p.t. = [0, 0.4]
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Open-source black-box algorithms v

• shgo-sobol was the best performing algorithm

• . . . followed closely by tgo and shgo-simpl

• shgo-sobol tends to outperform tgo, solving more problems for a

given number of function evaluations as expected for the same

sampling point sequence

• tgo produced more than one starting point in the same locally

convex domain while shgo is guaranteed to only produce one after

adequate sampling

• While shgo-simpl has the advantage of having the theoretical

guarantee of convergence, the sampling sequence has not been

optimised yet requiring more function evaluations with every

iteration than shgo-sobol
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Linear-constrained optimisation problems i

• The DISIMPL algorithm was recently proposed by [?]

• The experimental investigation shows that the proposed simplicial

algorithm gives very competitive results compared to the DIRECT

algorithm [?]

• More recently the Lc-DISIMPL variant of the algorithm was

developed to handle optimisation problems with linear constraints [?]

• Test on 22 optimisation problems again using the stopping criteria

pe = 0.01%

• Lc-DISIMPL-v, PSwarm (avg), DIRECT-L1 results produced by [?]

97



Linear-constrained optimisation problems ii

Table 1: Performance over all 22 test problems.

f.e. runtime (s)

problem algorithm

Average SHGO-simplicial 65 0.012852

SHGO-sobol 88 0.004144

TGO 100 0.004542

Lc-DISIMPL-v 366 -

Lc-DISIMPL-c >5877 -

PSO (avg) 3011 -

DIRECT-L1 (pp = 10) >17213 -

DIRECT-L1 (pp = 102) >28421 -

DIRECT-L1 (pp = 106) >75113 -
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Linear-constrained optimisation problems iii

Table 2: Performance over all 22 test problems.

f.e. nlmin nulmin runtime (s)

problem algorithm

All shgo-simpl 1463 26 26 0.27294

shgo-sobol 1864 23 23 0.091168

tgo 2123 29 25 0.093607
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Linear-constrained optimisation problems iv

• The higher performance of shgo compared to tgo and DISIMPL is

due to homological identification of unique locally convex sub-spaces

• shgo had

- no wasted local minimisations unlike tgo because the locally convex

sub-spaces are proven to be unique

- no need for switching between a local and global step as in DISIMPL

because the homology group rank growth tracks the global progress

every iteration without requiring further refinement in sub-spaces

• For the full table of results see

https://stefan-endres.github.io/shgo/files/table.pdf

Link
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Conclusions



Conclusions i

• The shgo algorithm shows promising properties and performance

• On test problems with linear constraints it was shown to provide

competitive results to the TGO, Lc-DISIMPL, PSwarm and

DIRECT-L1 algorithms

• On black-box problems it was shown to provide competitive results

to the TGO, BH and DE algorithms

• The use of a simplicial complex provides access to a wealth of tools

from combinatorial topology and the growing field of computational

homology

• It is hoped that these will drive further extensions and development
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Conclusions ii

• Due to the useful characterisations of objective function

hypersurfaces provided by the homology groups of the simplicial

complex, shgo allows an optimisation practitioner with a useful

visual tool for understanding and efficiently solving higher

dimensional black and grey box optimisation problems

• It is especially appropriate for computationally expensive black and

grey box functions common in science and engineering

• In addition because the homology groups can be calculated as

sampling progresses an optimisation practitioner can both visualise

the extent of the optimisation problems multi-modality and use

intelligent stopping criteria for the sampling stage
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Thank you for your time.
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Questions?



Backup slides: Overview of proof of the stationary point theo-

rem i

Theorem

(Stationary point in a minimiser star domain) Given a minimiser

vi ∈M ⊆ H0 on the surface of a continuous, Lipschitz smooth

objective function f with a compact bounded domain in Rn and range

R. For any n−dimensional k−chain C (Hk), k = n + 1 with subset of

edges E ⊆ {C (Hk), k = n + 1} ⊂ H1. If vi has incidence on a set of

edges E , then the chain of simplices containing E defines a k−chain

C (Dk), Dk ⊆ Hk , k = n + 1 near vi with every vertex in C (Dk)

connected to vi . There exists at least one stationary point of f within

the domain defined by the boundary cycle ∂(Dn+1).



Backup slides: Overview of proof of the stationary point theo-

rem ii

Overview

• Find a simplex with a Sperner labelling where each label represents a

different n + 1 label in every vector direction of the gradient vector

field ∇f of f

• Of the n + 1 Cartesian directions we require only a vector pointing

towards a section defined by n + 1 hyperplane cuts

• The remainder of the proof then proceeds as usual for Brouwer’s

fixed point theorem [?] found in for example [?, p. 40] utilising

Sperner’s lemma



Backup slides: Overview of proof of the stationary point theo-

rem iii

Theorem

(Sperner’s lemma [?]) Every Sperner labelling of a triangulation of a

n-dimensional simplex contains a cell labelled with a complete set of

labels: 1,2, . . . , n+1.

• For any minimiser vi ∈M ⊆ H0 we have by construction that for

any vertex vj with incidence on a connecting edge vivj that

f (vi ) < f (vj)

• By the MVT there is at least one point on vivj where ∇f points

towards a Cartesian direction in a section that can receive a unique

Sperner label



Backup slides: Overview of proof of the stationary point theo-

rem iv

• At this point are two possibilities:

1. If we have n + 1 vertices with incidence on an edge vivj ⊆ H1 in

every required Cartesian direction then we have a simplex within

st (vi ) with a complete Sperner labelling
2. In the case where we do not have n + 1 vertices in every required

section then by construction there is no vertex between vi and the
boundary of f defined by Ω in the required section. The two
possibilities are:

2.1 In the case where the constraint is not active and there exists at least

one point vk boundary where ∇f does not point towards the

boundary and by the MVT vk can receive a unique Sperner label from

which we can construct a simplex within st (vi ) with Sperner labelling

2.2 In the case where the constraint is active a local minimum lies on the

constraint which is in the domain defined st (vi )



Backup slides: Overview of proof of the stationary point theo-

rem v

• Following the combinatorial version of Brouwer’s fixed point theorem

[?] since ∇f is continuous and the domain st (vi ) is compact we can

produce a sequence of complete triangulations with arbitrarily small

size in which the size of the simplices decreases toward zero

• This sequence produces a sequence of vertices with gradients ∇f (V )

pointing in every n + 1 direction. By continuity there is a vector

∇f (X) near the sequences, since the zero vector is the only vector

pointing in all n + 1 directions we have a point X bounded by the

domain defined by st (vi ) where ∇f (X) = 0̄

This concludes the proof.



Backup slides: Overview of proof of the stationary point theo-

rem vi
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Backup slides: Overview of proof of the stationary point theo-

rem vii

• The three circled crosses are the (approximate) minimima of the

objective function within the given bounds.

• Here we have divided the plane so that the 3 required directions are

[0, π2 ), [π2 , π) and [π, 2π)

• Note that this division is arbitrary and any n + 1 = 3 subdivisions

can be chosen as long as all possible n + 1 = 3 directions that can

form a simplex in the space are covered (affinely independent)

• The three possible Sperner simplices are contained within the star

domains of each minimiser st (v1), st (v7) and st (v13)

1. v7 is an example of a simplex without a complete Sperner labelling

the red shaded area around v7 is the bounded domain wherein at

least one local minimum exist



Backup slides: Overview of proof of the stationary point theo-

rem viii

2. v13 has three possible edges in [π
2
, π) on which a point exists that

can be used as a vertex to receive a Sperner labelling for that

direction namely v13v14, v13v2 and v13v10. The only possible edges in

the [0, π
2

), [π
2
, π) directions are v13v5 and v13v9 respectively. The

simplex v5v9v10 drawn in the figure is not necessarily the simplex

with a Sperner labelling. The three vertices of the Sperner simplex

which are proven to exist through the MVT exists on each of the

edges v13v14, v13v2 and v13v10 in a subdomain of this simplex v5v9v10

3. v1 for example the simplex surrounding the minimiser is a possible

Sperner simplex with vertices on the edges in every required direction
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• Note that if the edge v13v14 was chosen instead of v13v10 then the

local minimum of the function would be outside the domain of the

simplex with the Sperner labelling. This is an important observation

because it demonstrates that the theorem cannot be used to further

refine the location of the local minimum from the domain st (v13)

using mechanisms of the proof, it only states that at least one local

minimum exists within st (v13)

• The boundaries of st (v13) can be found using the 3−chain C13(H3)

of simplices in st (v13), recall that the directions of simplices higher

than dimension 2 are undefined and so the directions can be

arbitrarily chosen

C13(H3) = v13v10v5 + v13v5v9 + v13v9v14 + v13v14v2 + v13v2v10



Backup slides: Overview of proof of the stationary point theo-

rem x

• C13(H3) clearly forms a cycle, applying the boundary operator we

find the faces defining the bounds of the domain of st (vi ) which in

this case is the chain of edges with defined direction

∂(C13(H3)) = −v10v5 + v5v9 − v9v14 + v14v2 + v2v10

thus ∂
(
∂(C (H3))

)
= ∅
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Theorem

(Invariance of an adequately sampled simplicial complex H) For a

given continuous objective function f that is adequately sampled by a

sampling set of size N. If the cardinality of the minimiser pool

extracted from the directed simplex H is |M|. Then any further

increase of the sampling set N will not increase |M|.
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Definition

Consider a simplicial complex H built on an objective function f with a

compact feasible set Ω using Definitions ?? through 5. The surface is

said to be adequately sampled if there is one and only one true

stationary point within every domain defined by the stationary point

theorem

For black box functions there is no way to know if the number and

distribution of sampling points is adequate without more information (for

example if the number of local minima are known in the problem).
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First we will prove invariance in the case where Ω = [l,u]n (ie a compact

space)

Overview of proof :

• The proof relies on a homomorphism between the simplicial complex

H constructed in the bounded hyperrectangle Ω and the homology

(mod 2) groups of a constructed surface S on which we can invoke

the invariance theorem

• Define the n-torus S0 from the compact, bounded hyperrectangle Ω

by identification of the opposite faces and all extreme vertices

• Now for every strict local minimum point p ∈ Ω puncture a

hypersphere and after appropriate identification the resulting

n-dimensional manifold Sg is a connected g sum of g tori

Sg := S0 #S1 # · · · #Sg−1 (g times)
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• Any triangulation K of the topological space S is homeomorphic to

S,

Hk(K) ∼= Hk(S) ∀k ⊂ Z

• Note that this homomorphism is for a mod 2 homology between a

triangulation K and the surface S and is thus undirected

• A triangulation corresponding to all vertices (0-simplices) and faces

(simplices) of K can be directed according to the first 3 definitions

for h providing the directed simplicial complex H

• By construction we have, for an adequately sampled simplicial

complex H, an equality which exists between the cardinality of M
and the Betti numbers of S as

|M| = h1 = rank(H1(S)) = rank(H1(K))
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• Here we invoke the invariance theorem

Theorem

(Invariance theorem [?]) The homology groups associated with a

triangulation K of the a compact, connected surface S are independent

of K. In other words, the groups H0(K), H1(K) and H2(K) do not

depend on the simplices, incidence coefficients, or anything else arising

from the choice of the particular triangulation K; they depend only on

the surface S itself.

• The invariance theorem can be extended to higher dimensional

triangulable spaces using singular homology through the

Eilenberg-Steenrod Axioms [?, ?]
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• As a direct consequence any triangulation of S will produce the

same homology groups for K
• Adding any new sampling point within the corresponding

subdomains of st (vi ) ∀i(vi ∈M ⊆ H0) as defined in the stationary

point theorem will by the first 4 definitions of h need to be

connected directly to vi by a new edge or the triangulation is no

longer a simplicial complex and thus not increase |M| since only one

vertex will be the new minimiser

• After adding any sampling point outside a domain st (vi ) then,

through the established homomorphism, any construction of H will

produce the same homology groups since rank(H1(K)) remains

unchanged and it is thus not possible for a new vertex to be wrongly

identified as a minimiser in the triangulation H
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This concludes the proof that any increase in N will not further increase

|M|.

N.B.

Any further refinement in the simplicial complex by further

sampling does not increase the number of locally convex

sub-domains in a compact space!
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Finally we prove a stronger invariance and convergence

• Consider the case where the constraints g are non-linear

• In addition we allow the objective function f to be non-continuous

and non-linear

• It is still assumed that the variables x are bounded

• Furthermore we assume that there is a feasible solution so that

Ω 6= ∅ and that there exists at least point in range of f mapped

within the domain Ω

• We will prove that if the simplicial sampling sequence [?] is used,

then shgo-simplicial will retain the Invariance property

• Secondly convergence of the shgo algorithm to the global minimum

is proved if the sub-triangulation simplicial sampling sequence is used
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Figure 20: Simplicial sampling by sub-triangulation of hyper-rectangles
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• Before proving these properties we will need to define a new

construction to deal with discontinuities in f

• From the definitions of h it is clear that f will only map a subset of

the feasible domain Ω, therefore only points within the this domain

need to be considered

• A new construction that considers discontinuities (such as

singularities) on the hypersurface of f is now defined:
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Definition

For an objective function f , F is the set of scalar outputs mapped by

the objective function f : P → F for a given sampling set P ⊆ Ω ⊆ Rn.

If a mapping of a vertex vi does not exist, then we define the mapping

as f : vi →∞. Any such point is excluded from the set M.

Note that any vertex v , f (v) =∞ that is connected to another vertex in

Ω that maps to a finite value will never be a minimiser.
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Theorem

(Invariance of an adequately sampled simplicial complex H in a

non-convex, non-compact space Ω) For a given non-continuous,

non-linear objective function f that is adequately sampled by a

sampling set of size N. If the cardinality of the minimiser pool

extracted from the directed simplex H is |M|. Then any further

increase of the sampling set N will not increase |M|.
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Overview of proof :

• The compact invariance theorem holds for any compact

hyperrectangular space B0 = [x1
l , x

1
u ]× [x2

l , x
2
u ]× · · · × [xnl , x

n
u ]

• Consider a set of subspaces Bi
∼= B0 with Bi ⊆ Ω ∀i ∈ I

• That is, Bi is any compact, rectangular subspace of Ω that is

homeomorphic to B0 (which is also homeomorphic to a point) and

can, therefore, be shrunk or expanded to arbitrary sizes while

retaining compactness

• Therefore any triangulation Ki of Bi retains the compact Invariance

property

• We allow all Bi to be connected or disconnected subspaces with

respect to any other Bj∈I within Ω
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• Now consider the (mod 2) homology groups H1(Ki ) of Ki

• Since the homology groups are abelian groups the rank is additive

over arbitrary direct sums:

rank

(⊕
i∈I

H1(Ki )

)
=
∑
i∈I

rank(H1(Ki ))

• Therefore the triangulations of both connected and disconnected

subspaces Bi within a possibly non-compact space Ω will retain the

same total rank

• After adequate sampling, the rank of H1(Ki ) will not increase by the

compact Invariance theorem
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• Any point that is not in Ω is not connected to any graph structure

by the definitions in h and therefore cannot increase the rank of any

homology group H1(Ki )

• Finally any vertex vi ∈ Ω for which f (vi ) does not exist will by the

new infinity construction for h be mapped to infinity by the defined

mapping f : vi →∞
• By the definition, vi can not be a minimiser and therefore cannot

increase the rank of any homology group H1(Ki )

• We have shown that the total rank of the homology groups

triangulated on all connected and disconnected subspaces Bi ∈ Ω

will not increase after adequate sampling

• It remains to be proven that these subspaces exist within Ω
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• We adapt the convergence proof used by [?] for subdivided simplicial

complexes

Proposition

For any point x ∈ Ω and any ε > 0 there exists an iteration k(ε) ≥ 1

and a point xki ∈ Hn ∈ Ω such that
∥∥xki − x

∥∥ < ε.

• Sampling points xi are vertices H0 belonging to the set of

n-dimensional simplices Hn

• Let δkmax be the largest diameter of the largest simplex

• Since the subdivision is symmetrical all simplices have the same

diameter δkmax after every iteration of the complex

• At every iteration the diameter will be divided through the longest

edge, thus reducing the simplices’ volumes
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• After a sufficiently large number of iterations all simplices will have

the diameter smaller than ε

• Therefore the vertices of the complex will converge to any and all

points inside compact subspaces Bi within Ω

• Since we have assumed that Ω 6= ∅ this proves the existence of

subspaces Bi
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This concludes the proof.

Convergence

From this proof the convergence to a global minimum within Ω, if

it exists, also trivially follows by noting that Bi is homeomorphic to a

point and that the stationary point theorem applies to any minimiser in

Bi . In practice the definition of h is implemented in [?] by using

exception handling that can capture any mathematical errors in

addition to converting any none float numbers outputted by an

objective function to infinity objects.
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Example

We expand the bounds of the Ursem01 function for two dimensions [?]

min f , x ∈ [0, 10]× [0, 10]

Subject to the following non-linear constraints:

(x1 − 5)2 + (x2 − 5)2 + 5
√
x1x2 − 29 ≥ 0

(x1 − 6)4 − x2 + 2 ≥ 0

9− x2 ≥ 0

f (x) = − sin (2x1 − 0.5π)− 3 cos (x2)− 0.5x1
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Figure 21: 3-dimensional plot of the Ursem01 function with expanded bounds
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First consider H without the non-linear bounds, here |M| = 12:
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After applying the non-linear version of h, the non-linear bounds produce

the following disconnected simplicial complexes:
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We use the fact that for abelian homology groups the rank is additive

over arbitrary direct sums rank
(⊕

i∈I H1(Ki)
)

=
∑

i∈I rank(H1(Ki)):
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• Discrete MVT: https://www.sciencedirect.com/science/

article/pii/S0377221707009952 .

https://www.maa.org/sites/default/files/0746834259610.

di020780.02p0372v.pdf . https://www.maa.org/sites/

default/files/0746834259610.di020780.02p0372v.pdf .

https://en.wikipedia.org/wiki/Mean_value_theorem#Mean_

value_theorem_in_several_variables (NOTE: The proof

provided here is based on Lipschitz continuity)

https://www.sciencedirect.com/science/article/pii/S0377221707009952
https://www.sciencedirect.com/science/article/pii/S0377221707009952
https://www.maa.org/sites/default/files/0746834259610.di020780.02p0372v.pdf
https://www.maa.org/sites/default/files/0746834259610.di020780.02p0372v.pdf
https://www.maa.org/sites/default/files/0746834259610.di020780.02p0372v.pdf
https://www.maa.org/sites/default/files/0746834259610.di020780.02p0372v.pdf
https://en.wikipedia.org/wiki/Mean_value_theorem#Mean_value_theorem_in_several_variables
https://en.wikipedia.org/wiki/Mean_value_theorem#Mean_value_theorem_in_several_variables
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Figure 22: Invariance of homology groups after adequate sampling
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