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Abstract The class of optimisation problems studied here are general non-linear
programming (NLP) problems with non-smooth, non-continuous objective and con-
straint functions. These problems fall within the category of constrained derivative
free optimisation (DFO), although results also hold for discrete optimisation prob-
lems such as mixed integer non-linear programming (MINLP). Lipschitzian-based
partitioning techniques are commonly employed by global optimisation algorithms
to find solutions to DFO problems that are assumed to be Lipschitz smooth; here
some of their properties are extended to the case where the functions cannot be as-
sumed to be Lipschitz smooth. The concept of invariance as used in the context of
algebraic topology is connected rigorously to the concept of convergence to a global
minimum as used in the context of global optimisation and NLP through a simpli-
cial homology. It is proved that all spatial partitioning algorithms with triangulable
partitioning spaces will converge to the global optimum in finite time when provided
with simple additional constructions. Particular emphasis is placed on analysis of
the simplicial homology global optimisation (SHGO) algorithm; a general purpose
global optimisation algorithm based on applications of simplicial integral homology
and combinatorial topology. The homology built on an objective function presents
a new way of visualising the multimodality of problems in hyperspace. This allows
for rigorous performance investigation of algorithms relying on everywhere dense
sampling sets in global convergence proofs.
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1 Introduction

In this publication we develop novel properties for a number of constrained derivative
free optimisation (DFO) algorithms. In particular these include a family of algorithms
classified as Lipschitzian-based partitioning techniques by Rios and Sahinidis [18]
which include the algorithm developed by Shubert [[19]], DIvide a hyper- RECTangle
(DIRECT) [11] and Branch-and-bound (BB) algorithms. However, similar construc-
tions are possible for any algorithm using a response surface or covering space that
fully covers the search space and is triangulable. For example the hypercube is tri-
angulable [22], therefore the family of DIRECT algorithms based on [8] will inherit
these properties. It is further proved that any topological properties that are proven to
hold within a compact domain space, also hold across non-compact domain spaces
after adequate refinement as defined through the proof.

Mainly it is shown how homological invariance can be used as a gateway to prov-
ing convergence across disconnected, well behaved sub-domains on non-continuous
objective functions. Most of these algorithms were inherently designed for Lipschitz
smooth objective functions. However, we will show that very simple additional con-
structions can guarantee global convergence on a broader class of problems. The full
abstract constructions used in the proofs are employed in the simplicial homology
global optimisation (shgo) algorithm [3 |6], but the properties are inherent in the
modified objective function defined in therefore only this modification
is required (implemented in practice by using a simple wrapper) to retain global con-
vergence guarantees. An explicit triangulation is unnecessary; the spacial partitioning
need only be known to be triangulable.

In the most general case of the DFO optimisation problems discussed here are of
the form:

ir;f f(x), xeR"
st. gi(x)>0,Vi=1,...m
hj(x):()7 Vi=1,..,p @))
x is a vector of one or more variables.
f(x) is the objective function f : R™ — R.

gi(x) are the inequality constraints g : R™ — R™.
hj(x) are the equality constraints k : R™ — R?.

The real objective function f(x) maps a vector of dimension n to a scalar value.
It is important to note that R is the codomain of f, but the image of f is inherently
unknown (a subset of R). It can be either smooth or non-smooth. In the most general
case f is a non-convex, non-continuous function. In this publication we will describe
the concept of sub-domains wherein f behaves as a Lipschitz continuous function
which should be clear from the context. In addition it is assumed that the objective
function has a finite number of local minima. Note that a local minimum does not
always exis{T] So we are in fact looking for a local infimum of the feasible search
space. Finally, the variables x are assumed to be bounded. For example if lower and

! for example consider the piece-wise linear function f = + 1Vz > 0,and —z Vz <0
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upper bounds /; and u; are implemented for each variable then we have an initially
defined hyperrectangle

zx € N CLu)" = [l1, wa] x [l2, ug] X ... X [ln, up] CR"” (2)

where (2 is the limited feasible subset excluding points outside the bounds and con-
straints.

N={xelLbu]"|gi(x)>0Vi€Zy, hj(z) =0Vj € Z;} 3)

For example when the constraints in g are linear and there are no equality constraints
then the set (2 is always a compact space.

The convergence of the DIRECT [[7,111]] algorithm in non-compact spaces (caused
for example by general, non-linear inequality constraint) was previously proven by
Finkel and Kelley [8], however, in [8] it is required that f be Lipschitz continuous in
the domain [1,u]™. In [[7, [I1]] the objective function is modified by what is referred
to as "hidden constraints" which are detected when f fails to return a value. We will
show that this is an equivalent construction to the one described in this publication
and therefore the condition of Lipschitz continuity is unnecessary since the software
implementation of [7]] will converge to the global minimum under the larger class
of problems described in[Equation | Many algorithms in literature are derived from
DIRECT. For example the novel DISIMPL (DIviding SIMPLices algorithm [15} [16}
17] is based on DIRECT and is also proven to converge in compact spaces while
showing much greater performance than DIRECT under certain conditions such as
problems with linear constraints.

In building towards the proof we start by rigorously defining a simplicial complex
approximation of the objective function f. Several theorems applying to compact
Lipschitz spaces were proven in [6] which will be reviewed and used to prove an
invariance across discontinuous spaces (a homology on f). Finally it is shown that
convergence follows trivially from the invariance.

2 Directed simplicial complex approximation of the objective function

Consider the general objective function mapping in real space f : R™ — R. The
purpose of this section is to describe a discrete mapping h : P — H to provide a
simplicial approximation for the surface of f. Describing this construction will re-
quire several concepts from algebraic and combinatorial topology [10]]. The following
definition was adapted from Hatcher [9, p. 9]

Definition 1 A n-simplex is a set of n+ 1 vertices in a convex polytope of dimension
n. Formally if the n + 1 points are the n + 1 standard n + 1 basis vectors for R(*+1).
Then the n-dimensional n-simplex is the set

n+1
S" = {(tl,...7tn+1) € R Zth =14 >o}
1

For example, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. We will use
the following combinatorial definition of a simplicial complex [9, p. 107]
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Definition 2 A simplicial complex  is a set #° of vertices together with sets H" of
n-simplices, which are (n + 1)-element subsets of #°. The only requirement is that
each (k + 1)-elements subset of the vertices of an n-simplex in H" is a k-simplex, in

HE .

Thus each n-simplex has n + 1 distinct vertices, and no other n-simplex has this same
set of vertices.

In this publication the H symbol will be used to represent a (finite) simplicial
complex rather than the more standard A to avoid confusion with the difference
and Laplacian operators common in optimisation. The superscript H” represents the
subset of k—dimensional simplices where for an n dimensional problem the highest
dimensional k—simplex contains n 4 1 vertices. Finally we define a k-chain [10]

Definition 3 A k-chain is a union of simplices.

For example a 0-chain is a set of vertices, a 1-chain is a set of edges and a 2-chain is a set
of triangles. C(H*) denotes a k—chain of k—simplices. A vertex in 7 is denoted by
v;. If v; and v; are two endpoints of a directed edge in ' from v; to v; then the symbol
v;0; represents the edge so that it is bounded by the 0—chain 0 (v;7;) = v; — v; and
similarly for an edge directed from v; to v;, we have, 0 (U;7;) = 0 (—v;0;) = v; — v;.
Higher dimensional simplices can be represented and directed in a similar manner,
for example a triangle consisting of three vertices v;, v; and vy, directed as U;v;0y, has
the boundary of directed edges 0 (T;0;7;) = ;05 + U; 0, + U, 0;.

We start by formally defining the set of vertices from which O-chains of the
simplicial complex H are built and the edges from which the 1-chains of H are built.

Definition 4 Let X be the set of sampling points generated by a sampling sequence
in the bounded hyperrectangle [1, u]™. The set P = {x € X' | g(x) > 0} is a set of
points within the feasible set {2 .

Definition 5 For an objective function f, F is the set of scalar outputs mapped by
the objective function f : P — F for a given sampling set P C 2 C R".

Definition 6 Let 7{ be a directed simplicial complex. Then H° := P is the set of all
vertices of H .

Definition 7 For a given set of vertices H°, the simplicial complex H is constructed
by a triangulation connecting every vertex in 7. The triangulation supplies a set of
undirected edges E.

Definition 8 The set 7! is constructed by directing every edge in E. A vertex v; € H°
is connected to another vertex v; by an edge contained in E. The edge is directed as
;05 from v; to v; iff f(v;) < f(v;) so that O (7;0;) = v; — v;. Similarly an edge is
directed as 7;; from v; to v; iff f(v;) > f(v;) so that 0 (v;7;) = v; — v;.

For practical computational reasons we must also consider the case where f(v;) =

f(v;). If neither v; or v; is already a minimiser (see [Definition 9) we will make use

of rule that the incidence direction of the connecting edge is always directed towards
the vertex that was generated earliest by the sampling point sequence. If v; is not
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connected to another vertex vy then we leave the notation v;v; undefined and let
d (v;0%) = 0. We let the higher dimensional simplices of H*, k = 2,3,...n + 1 be
directed in an arbitrary direction which completes the construction of the complex
h : P — H. We can now use H to find the minimiser pool for the local minimisation
starting points used by the algorithm:

Definition 9 A vertex v; is a minimiser iff every edge connected to v; is directed
away from v;, that is 9 (V;05) = (vjzi — v;) V 0 Vv,2; € H°. The minimiser pool M
is the set of all minimisers.

3 Locally convex sub-domains and invariance of the directed complex within a
bounded hyperrectangle

3.1 Sub-domains of 2

Consider a rectangular sub-domain ¥ C 2 with the exact geometric shape of [1, u]™
wherein f is Lipschitz smooth. In[Section 4|we will demonstrate that these subdomains
can be found, if they exist, in any space {2, but in this section it is important to consider
¥ independently of {2 in order to build and understand the topological properties of
¥. Such a space is compact, [Theorem 1| was previously proved by Endres et al. [6]:

Theorem 1 Given a minimiser v; € M C H° on the surface of a continuous,
Lipschitz smooth objective function f with a compact bounded domain in R™ and
range R, there exists at least one stationary point of | within the domain defined by
st (v;).

is built on previous results of Brouwer’s fixed point theorem [2]
found in for example Henle [[10, p. 40] utilising Sperner’s lemma. It is essentially an
generalisation of the combinatorial version of the classical fixed point theorem and
can be used to find proven local minima together with their compact, locally convex
sub-domains (st (v;)) in spaces that allow for general constraints (analogous to the
Karush—Kuhn—Tucker (KKT) generalisation of the method of Lagrange multipliers).
In addition the extension allows for the detection of one or more sub-domains with
proven fixed points on the gradient vector fields of black-box numerical functions.
Note that finding st (v;) C ¥ C {2 relies on the refinement of # through h by using
increased sampling P. This theorem applies to any subdomain ¥. The usefulness of
is immediately obvious (a starting point in a well defined attractor with
added constraints in O (st (v;)) can quickly find the local infimum). However, it is
even more important as geometric marker from which we may induce topological
properties of our problem (a homology built on f). To understand how this homology
relates to other computational homologies it is useful to imagine the inverse of a
bounded gradient field which has singularities at local minima.

is built on Sperner’s lemma.

Theorem 2 (Sperner’s lemma [20|]) Every Sperner labelling of a triangulation of a
n-dimensional simplex contains a cell labelled with a complete set of labels: 1,2, . . .,
n+l1.
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The abstractions allows for many useful results from the field of algebraic topology.
For example De Loera et al. [3]] where they proved the Atanassov conjecture [1] that for
any polytope with IV vertices there are N — n simplices that receive a complete set of
Sperner labels. Meunier [[13] further extended this theorem and more recently Musin
[14] extended the theorems to a large class of manifolds with or without boundary.

The theorems by Meunier and Musin allow us to extend Sperner’s lemma to a
simplicial complex built in a (n + 1)-dimensional non-euclidean space. This would
allow the application of ideas from discrete differential geometry. For example the
Gauss-Bonnet theorem holds for discrete simplicial surfaces [[12].

In global optimisation theory a simplicial complex built in this space can be used
for approximating local and global Lipschitz constants for an objective function while
still retaining the ability to detect locally convex sub-domains in the search space.
Furthermore it allows for any results of optimisation problems in real euclidean
spaces to be used in a large class of other spaces.

3.2 Invariance of ¥ C (2

For black box functions there is no way to know if the number and distribution of
sampling points is adequate without more information (for example if the number of
local minima are known in the problem). However, it is an important property of the
algorithm that | M| will stop increasing with higher sampling after this point. First we
define an adequately sampled surface.

Definition 10 Consider a simplicial complex 7 built on an objective function f with
a compact feasible set ¥ using Definitions [6] through [9] The surface is said to be
adequately sampled if there is one and only one true stationary point within every

domain defined by

Finally we state following theorem proved in [[6] which holds in the case where
¥ = [Lu]"™

Theorem 3 (Invariance of an adequately sampled simplicial complex H) For a given
continuous objective function f that is adequately sampled by a sampling set of size
N. If the cardinality of the minimiser pool extracted from the directed simplex H is
| M|. Then any further increase of the sampling set N will not increase | M|.

The proof provided in [6] relies on a homomorphism between the simplicial
complex H constructed in the bounded hyperrectangle ¥ and the homology (mod 2)
groups of a constructed surface S on which we can invoke the Invariance theorem as
defined in fundamental homologies such as Eilenberg and Steenrod [4]. We review
some of the abstract geometric and topological mechanisms used in this proof, which
will aid in understanding the proof in[Section 4]

Endres et al. [6] defined the n-torus Sy from the compact, bounded hyperrectangle
¥ by identification of the opposite faces and all extreme vertices. Now for every
strict local minimum point p € ¥ puncture a hypersphere and after appropriate
identification the resulting n-dimensional manifold S, is a connected g sum of g tori
S:i=8So#S1# - #S5-1 (g times).
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Figures [T] and [2] demonstrate the process geometrically. Figure [T] shows how to
puncture a hypersphere and make the usual identifications in a 2-dimensional problem.
Figure 2] demonstrates the construction of S, .

4 Invariance and convergence of non-continuous, non-linear optimisation
problems with bounded variables

In this section we present the main contribution of this paper. Consider again
but now we are working with the fully general case where g is non-linear
and (2 is not a compact set. In addition we allow f to be non-continuous (in having
removable or jump discontinuities across large sub-domains) and non-linear. It is still
assumed that the variables x are bounded. Furthermore we assume that there is a
feasible solution so that {2 # () and that there exists at least one point in the range of f
mapped within the domain {2. We will prove that if the simplicial sampling sequence]?|
[5] is used, then SHGO will retain the invariance property of Secondly
convergence of the SHGO algorithm is proved when the number of sampling points
tends to infinity.

Before proving these properties we will need to define a new construction to deal
with discontinuities in f. From [Definition 4] and [Definition 3] it is clear that f will
only map a subset of feasible domain (2, therefore only points within the this domain
need to be considered. A new construction replacing that considers
discontinuities (such as singularities) in the hypersurface of f is now defined:

Definition 11 For an objective function f, F is the set of scalar outputs mapped by
the objective function f : P — F for a given sampling set P C 2 C R". If a
mapping of a vertex v; does not exist, then we define the mapping as f : v; — oo.
Any such point is excluded from the set M.

Note from [Definition 8 that any vertex v, f(v) = oo that is connected to an-

other vertex in {2 that maps to a finite value will never be a minimiser. This simple
construction allows us to develop the following theorem:

Theorem 4 (Invariance of an adequately sampled simplicial complex H in a non-
convex, non-compact space §2). For a given non-continuous, non-linear objective
function f that is adequately sampled by a sampling set of size N. If the cardinality
of the minimiser pool extracted from the directed simplex H is |M|. Then any further
increase of the sampling set N will not increase | M.

Proof holds for any compact hyperrectangular space By = [z}, z)] x
[22,22] x - -+ x [z]',2"]. Consider a set of subspaces B; = B, with B; C 2 Vi € 1.
That is, B; is any compact, rectangular subspace of {2 that is homeomorphic to B
(which is also homeomorphic to a point) and can, therefore, be shrunk or expanded

to arbitrary sizes while retaining compactness. Therefore any triangulation KC; of B;

retains the invariance property from[Theorem

2 This sampling sequence refines a simplicial complex by sub-dividing the largest face of its simplices
and has the property that after every iteration the subdivisions of the complex are symmetric and isomorphic
to the initial triangulation
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by ay

Fig. 1 The process of puncturing a hypersphere at a minimiser point in a compact search space. Start by
identifying a minimiser point in the H! (2 K1) graph. By construction, our initial complex exists on
the (hyper-)surface of an n-dimensional torus Sp such that the rest of X! is connected and compact. We
puncture a hypersphere at the minimiser point and identify the resulting edges (or (n—1)-simplices in higher
dimensional problems). Next we shrink (a topological (ie continuous) transformation) the remainder of the
simplicial complex to the faces and vertices of our (hyper-)plane model. Make the appropriate identifications
for Sp and glue the identified and connected face z (a (n — 1)-simplex) that resulted from the hypersphere
puncture. The other faces (ie (n — 1)-simplices) are connected in the usual way for tori constructions)
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Fig. 2 The process of puncturing a new hypersphere on So # S1 can be repeated for any new minimiser
point without loss of generality producing S := So # S1# - -+ # Sg—1 (g times)

We allow all B; to be connected or disconnected subspaces with respect to any
other B,c; within £2. Now consider the (mod 2) homology groups H; (;) of K;.
Since the homology groups are abelian groups the rank is additive over arbitrary direct
sums:

rank (@ Hl(/Ci)> = Zrank(H1(/Ci))

icl icl

Therefore the triangulations of both connected and disconnected subspaces B; within
a possibly non-compact space {2 will retain the same total rank. After adequate
sampling, the rank of H;(K;) will not increase by [Theorem 3| Any point that is
not in {2 is not connected to any graph structure by [Definition 4| and [Definition 3|
and therefore cannot increase the rank of any homology group H; (K;). Finally any
vertex v; € (2 for which f(v;) does not exist will by be mapped to
infinity by [Definition 11| By [Definition 9} v; can not be a minimiser and therefore
cannot increase the rank of any homology group H; (K;). demonstrates this
property geometrically.

We have shown that the total rank of the homology groups triangulated on all
connected and disconnected subspaces B; € {2 will not increase after adequate
sampling. It remains to be proven that these subspaces exist within (2. We adapt the
proposition used in the convergence proof by Paulavicius et al. [17] for subdivided
simplicial complexes.
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Fig. 3 Visual demonstration on surfaces with non-linear constraints, the shaded region is unfeasible. The
vertices of the points mapped to infinity have undirected edges, therefore they do not form simplicial
complexes in the integral homology. The surfaces of each disconnected simplicial complex /C; can be
constructed from the compact version of the invariance theorem. The rank of the abelian homology groups
H(K;) is additive over arbitrary direct sums

Proposition 1 For any point x € (2 and any ¢ > 0 there exists an iteration k() > 1
and a point x¥ € H™ € (2 such that ||xiC - XH <€

Sampling points x; are vertices H belonging to the set of n-dimensional simplices
H™. Let 6%, be the largest diameter of the largest simplex. Since the subdivision is
symmetrical all simplices have the same diameter 6%, after every iteration of the
complex. At every iteration the diameter will be divided through the longest edge,
thus reducing the simplices’ volumes. After a sufficiently large number of iterations all
simplices will have the diameter smaller than e. Therefore the vertices of the complex
will converge to any and all points inside compact subspaces B; within (2. Since we

have assumed that {2 = () this proves the existence of subspaces B;.

This concludes the proof of

From this proof the convergence to a global minimum within 2, if it exists, also
trivially follows by noting that B; is homeomorphic to a point and that
applies to any minimiser in B;. In practice is implemented in Endres
[S]] by using exception handling that can capture any mathematical errors in addition
to converting any non-float objects/numbers outputted by an objective function to
infinite floating point values that are defined to be greater than any other floating point
values.
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5 Numerical example: the geometry and topology of non-continuous global
optimisation

5.1 Optimisation across discontinuities in f

This section demonstrates the principles behind the proof of using a
numerical example that is easy to visualise rather than assessing any performance
on functions with Lipschitz discontinuities which is beyond the scope of this paper.
Consider the following numerical example which contains a number of different types
of discontinuities.

Example 1 Consider an optimisation instance defined by the following objective
function together with its domain {2 C [—4.5,4.5]"

Flx) = Vi —3+ Z?Zl(mf + 52;) + 25 (sin2(xl) + COSQ(I'Q)) Yz, > —1
= VT =3+ 32 (xF + 5a;) + 25 (sin?(21) + cos?(z2)) + 50 Vay < —1
“4)
A 3-dimensional plot is provided in There are six local minima and one
global minimum. Note that negative square roots are not defined in real space, the
large discontinuities are representative of the mathematical and numerical errors en-
countered when computing objective functions. In we show the directed
simplicial complex approximation of f and their homology constructs. It is observed
that the algorithm initially assumes that {2 is compact, however, subsequent refine-
ment demonstrates discontinuities and the disconnected subgraphs search for compact
sub-domains. In we demonstrate that further refinement does not alter the
homology group rank of the simplicial complex. further demonstrates how
the star domain sub-spaces of st(v) are refined to locally convex sub-domains of 2.

5.2 Performance discussion

The reliance on everywhere dense sets for convergence is questionable with respect
to the performance of algorithms. For example Stephens and Baritompa [21]] showed
that in some cases algorithms must essentially reduce to a brute force. In general
efficient global optimisation requires global information. However, in many black-box
problems global information is difficult or impossible to obtain. For example it is
obviously the case that discontinuous functions do not have global Lipschitz bounds.

The rigorous concept of adequate sampling proves both that the shgo algorithm
finds the global minimum before sets are everywhere dense (unless the solution space
is also everywhere dense) and that sub-domains can be used to obtain approximate
global properties of f in the form of an invariance on f. For example
demonstrates the homology group growth on Example 1 as the number of sampling
points is increased. This tool can be used by an optimisation practitioner to aid in the
visualisation of the behaviour of a function f which can’t be visualised in hyperspaces
of arbitrary dimensions (by for example plotting the surface). Informally, the growth
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Fig. 4 3-dimensional surface plot of Example 1
00 60, 0 ; <
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Fig. 5 Refinements into disconnected sub-graphs of Example 1 across its discontinuities. The contour and
surface plots of the objective function and a simplcial complex appromixation after an initial triangluation
given is shown on the left and a first iteration of initial refinement is shown on the right. The larger, red
vertices are minimiser points
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Fig. 7 Homology group growth of Example 1 across its discontinuities as a function of sampling points N

rate of the homology group rank of H; (7{,) is a measure of the approximate sparsity
of solutions and the pathology of f. The approximate equilibrium value of the rank
of H;(H1) as N becomes arbitrarily large (the growth is not always monotone) is a
measure of the multi-modality of f.

We note at this point that the inverse of[Theorem 4]is not true. In other words a stop
in | M| growth over iterations does not imply that the search space has been adequately
sampled. These figures demonstrate the theoretical convergence of an algorithm using
topological deductions. Therefore in practice | M| is mostly useful as a heuristic, but
cannot be used as a rigorous stopping criteria unless | M| is known a-priori.
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5.3 Singularities in f

The minimization of a function with infinite discontinuities on f has not been well
defined on[Equation I| Infinite discontinuities where the objective function becomes
arbitrarily large f — 400 at a vector X, are simple enough to understand and fit
in well with our restructured objective function These points largely
behave largely the same as any other points in unfeasible domains. However, when
the objective function becomes arbitrarily small at x.,, f — —oo, the solution to
[Equation T|becomes more difficult to define. For example the point X is smaller than
any point in {2, however, since the limit of the objective function is not defined at x.,
it is not the infimum of (2. A precise rigorous definition is a subject of real analysis and
will not be discussed in depth in this publication. However, in optimisation practice
the solution to s defined within some percentage error. Therefore any point
x* near the infinite discontinuity X, <~ x* within some tolerance of ||xF — x| < ¢
is considered a solution to In this neighbourhood the usual notion of
compact sub-domains still apply, the algorithms will seek well behaved sub-domains
that a contain a point x* <— X. In addition there is an arbitrarily small sub-domain
bounded by 9 (st (x*)) that is well behaved. As discussed in this section finding this
solution on a pathological surface reduces to brute force.

6 Conclusion

By constructing a homology on the objective function f we have shown that the
convergence of spatial partitioning algorithms to the global minimum trivially follows
from the invariance of the homology. Furthermore we have shown that computing and
tracking the homology groups on f connects the concept of well-behaved functions
to a compatible metric that can be defined on objective functions of arbitrary finite
dimensions.
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