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Abstract The class of optimisation problems studied here are general non-linear
programming (NLP) problems with non-smooth, non-continuous objective and con-
straint functions. These problems fall within the category of constrained derivative
free optimization (DFO), although results also hold for discrete optimisation prob-
lems such as MINLP. The concept of Invariance -as used in the context of algebraic
topology- is connected rigorously to the concept of convergence to a global mini-
mum -as used in the context of global optimisation and NLP- through a simplicial
homology. It is proved that all spatial partitioning algorithms with triangulable par-
titioning spaces will converge to the global optimum in finite time when provided
with simple additional constructions. Particular emphasis is placed on analysis of
the simplicial homology global optimisation (SHGO) algorithm; a general purpose
global optimisation algorithm based on applications of simplicial integral homology
and combinatorial topology. The homology built on an objective function presents a
new way of visualising the multimodality of problems in hyperspace. This allows for
rigorous method for performance investigation of algorithms relying on everywhere
dense sampling sets in global convergence proofs.
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1 Introduction

In this publication we develop novel properties for a number of constrained derivative
free optimization (DFO) algorithms. In particular these include a family of algorithms
classified as Lipschitzian-based partitioning techniques by Rios and Sahinidis [18]
which include the algorithm developed by Shubert [19], DIvide a hyper- RECTangle
(DIRECT) [11] an Branch-and-bound (BB) algorithms. However, similar construc-
tions are possible for any algorithm using a response surface or covering space that
fully covers the search space and is triangulable. For example the hypercube is tri-
angulable [22], therefore the family of DIRECT algorithms based on [8] will inherit
these properties. It is further proved that any topological properties that are proven
to hold within a compact space, also holds across non-compact spaces after adequate
refinement as defined through the proof.

Mainly it is shown how homological invariance can be used as a gateway to prov-
ing convergence across disconnected well behaved sub-domains on non-continuous
objective functions. Most of these algorithms were inherently designed for Lipschitz
smooth objective functions. However, we will that very simple additional construc-
tions can guarantee global convergence to broader class of problems, the computa-
tional cost is suspected to be minimal. The full abstract constructions used in the
proofs are employed in the simplicial homology global optimisation (shgo) algorithm
[6, 5], but the properties are inherent in the modified objective function defined in
Definition 11, therefore only this modification is required (implement in practice with
a simple wrapper) to retain global convergence guarantees. For example, computa-
tion a triangulation is unnecessary, the spacial partitioning need only be known to be
triangulable

In the most general case of the DFO optimisation problems discussed here are of
the form:

min
x

f(x), x ∈ Rn

s.t. gi(x) ≥ 0, ∀i = 1, ...,m

hj(x) = 0, ∀j = 1, ..., p (1)

– x is a vector of one or more variables.
– f(x) is the objective function f : Rn → R.
– gi(x) are the inequality constraints g : Rn → Rm.
– hj(x) are the equality constraints h : Rn → Rp.

The real objective function f(x) maps a vector of dimension n to a scalar value.
It is important to note that R is the codomain of f , but the image of f is inherently
unknown (a subset of R). It can be either smooth or non-smooth. In the most general
case f is a non-convex, non-continuous function. In this publication we will describe
the concept of sub-domains wherein f behaves as a Lipschitz continuous function
which should be clear from the context. In addition it is assumed that the objective
function has a finite number of local minima. Note that a local minimum does not
always exist1. So we are in fact looking for a local infimum of the feasible search

1 for example consider the piece-wise linear function f = x + 1 for ∀x ≥ 0, and -x ∀x ≥ 0
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space. Finally, the variables x are assumed to be bounded. For example if lower and
upper bounds li and ui are implemented for each variable then we have an initially
defined hyperrectangle

x ∈ Ω ⊆ [l,u]n = [l1, u1] × [l2, u2] × . . . × [ln, un] ⊆ Rn (2)

where Ω is the limited feasible subset excluding points outside the bounds and con-
straints.

Ω = {x ∈ [l,u]n | gi(x) ≥ 0 ∀i ∈ Zm, hj(x) = 0 ∀j ∈ Zj} (3)

For example when the constraints in g are linear and there are no equality constraints
then the set Ω is always a compact space.

The convergence of the DIRECT [11, 7] algorithm in non-compact spaces (caused
for example by general, non-linear inequality constraint) was previously proven by
Finkel and Kelley [8], however, in [8] it is required that f be Lipschitz continuous in
the domain [l,u]n. In [11, 7] the objective function is modified by what is referred
to as "hidden constraints" which are detected when f fails to return a value. We will
show that this is an equivalent construction to the one described in this publication
and therefore the condition of Lipschitz continuity is unnecessary since the software
implementation of [7] will converge to the global minimum under the larger class
of problems described in Equation 1. Many algorithms in literature are derived from
DIRECT for example the novel DISIMPL (DIviding SIMPLices algorithm [15, 16, 17]
is based onDIRECT is also proven to converge in compact spaceswhile showingmuch
greater performance than DIRECT under certain conditions such as linear constraints.

In building towards the proof we start by rigorously defining a simplicial complex
approximation of the objective function f . Several theorems applying to compact
Lipschitz spaces were proven in [6] which will be reviewed and used to prove an
invariance across discontinuous spaces (a homology on f ). Finally it is shown that
convergence follows trivially from the invariance.

2 Directed simplicial complex approximation of the objective function

Consider the general objective function mapping in real space f : Rn → R. The
purpose of this section is to describe a discrete mapping h : P → H to provide a
simplicial approximation for the surface of f . Describing this construction will re-
quire several concepts from algebraic and combinatorial topology [10]. The following
definition was adapted from Hatcher [9, p. 9]

Definition 1 A k-simplex is a set of n + 1 vertices in a convex polyhedron of
dimension n. Formally if the n+ 1 points are the n+ 1 standard n+ 1 basis vectors
for R(n+1). Then the n-dimensional k-simplex is the set

Sn =

{
(t1, . . . , tn+1) ∈ Rn+1 |

n+1∑
1

tn+1 = 1, ti ≥ 0

}
For example, a 2-simplex is a triangle and a 3-simplex is a tetrahedron. We will use
the following combinatorial definition of a simplicial complex [9, p. 107]
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Definition 2 A simplicial complexH is a setH0 of vertices together with setsHn of
n-simplices, which are (n + 1)-element subsets of H0. The only requirement is that
each (k+ 1)-elements subset of the vertices of an n-simplex inHn is a k-simplex, in
Hk .

Thus each n-simplex has n+1 distinct vertices, and no other n-simplex has this same
set of vertices.

In this publication the H symbol will be used to represent a (finite) simplicial
complex rather than the more standard ∆ to avoid confusion with the difference
and Laplacian operators common in optimisation. The superscript Hk represents the
subset of k−dimensional simplices where for an n dimensional problem the highest
dimensional k−simplex contains n+ 1 vertices. Finally we define a k-chain [10]

Definition 3 A k-chain is a union of simplices.

For example a 0-chain is a set of vertices, a 1-chain is a set of edges and a 2-chain is a set
of triangles. C(Hk) denotes a k−chain of k−simplices. A vertex inH0 is denoted by
vi. If vi and vj are two endpoints of a directed edge inH1 from vi to vj then the symbol
vivj represents the edge so that it is bounded by the 0−chain ∂ (vivj) = vj − vi and
similarly for an edge directed from vj to vi, we have, ∂ (vjvi) = ∂ (−vivj) = vi−vj .
Higher dimensional simplices can be represented and directed in a similar manner,
for example a triangle consisting of three vertices vi, vj and vk directed as vivjvk has
the boundary of directed edges ∂ (vivjvj) = vivj + vjvk + vjvi.

We start by formally defining the set of vertices from which 0-chains of the
simplicial complex are built and the of edges from which the 1-chains ofH are built.

Definition 4 Let X be the set of sampling points generated by a sampling sequence
in the bounded hyperrectangle [l,u]n. The set P = {x ∈ X | g(x) ≥ 0} is a set of
points within the feasible set Ω .

Definition 5 For an objective function f , F is the set of scalar outputs mapped by
the objective function f : P → F for a given sampling set P ⊆ Ω ⊆ Rn.

Definition 6 Let H be a directed simplicial complex. Then H0 := P is the set of all
vertices ofH .

Definition 7 For a given set of verticesH0, the simplicial complexH is constructed
by a triangulation connecting every vertex in H0. The triangulation supplies a set of
undirected edges E.

Definition 8 The setH1 is constructed by directing every edge inE. A vertex vi ∈ H0

is the connected to another vertex vj by an edge contained in E. The edge is directed
as vivj from vi to vj iff f(vi) < f(vj) so that ∂ (vivj) = vj − vi. Similarly an edge
is directed as vjvi from vj to vi iff f(vi) > f(vj) so that ∂ (vjvi) = vi − vj .

For practical computational reasons wemust also consider the case where f(vi) =
f(vj). If neither vi or vj is already a minimiser (see Definition 9) we will make use
of rule that the incidence direction of the connecting edge is always directed towards
the vertex that was generated earliest by the sampling point sequence. If vi is not
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connected to another vertex vk then we leave the notation vivk undefined and let
∂ (vivk) = 0. We let the higher dimensional simplices of Hk, k = 2, 3, . . . n + 1 be
directed in any arbitrary direction which completes the construction of the complex
h : P → H. We can now useH to find the minimiser pool for the local minimisation
starting points used by the algorithm:

Definition 9 A vertex vi is a minimiser iff every edge connected to vi is directed
away from vi, that is ∂ (vivj) = (vj 6=i− vi)∨ 0 ∀vj 6=i ∈ H0. The minimiser poolM
is the set of all minimisers.

3 Locally convex sub-domains and Invariance of the directed complex within a
bounded hyperrectangle

3.1 Sub-domains of Ω

Consider a rectangular sub-domain Ψ ⊆ Ω in the shape of [l,u]n wherein f is
Lipschitz smooth. In Section 4 we will demonstrate that these subdomains can be
found, if they exist, in any space Ω, but in this section it is important to consider Ψ
independently of Ω in order to build and understand the topological properties of Ψ .
Such a space is compact, Theorem 1 was previously proved by Endres et al. [6]:

Theorem 1 Given a minimiser vi ∈ M ⊆ H0 on the surface of a continuous,
Lipschitz smooth objective function f with a compact bounded domain in Rn and
range R, there exists at least one stationary point of f within the domain defined by
st (vi).

Theorem 1 is built on previous results of Brouwer’s fixed point theorem [2]
found in for example Henle [10, p. 40] utilising Sperner’s lemma. It is essentially an
generalisation of the classical fixed point theorem and can be used to find proven local
minima together with their compact, locally convex sub-domains (st (vi)) in spaces
that allow for general constraints (analogous to the Karush–Kuhn–Tucker (KKT)
generalisation of themethod of Lagrangemultipliers). In addition the extension allows
for the detection of one or more sub-domains with proven fixed points on the gradient
vector fields of black-box numerical functions. Note that finding st (vi) ⊂ Ψ ⊆ Ω
relies on the refinement ofH through h by using increased sampling P . This theorem
applies to any subdomain Ψ . The usefulness of Theorem 1 is immediately obvious (a
starting point in awell defined attractorwith added constraints in∂ (st (vi)) can quickly
find the local infimum). However, it is even more important as geometric marker from
which we may induce topological properties of our problem (a homology built on
f ). To understand how this homology relates to other computational homologies it is
useful to imagine the inverse of a bounded gradient field which has singularities at
local minima.

Theorem 1 is built on Sperner’s lemma.

Theorem 2 (Sperner’s lemma [20]) Every Sperner labelling of a triangulation of a
n-dimensional simplex contains a cell labelled with a complete set of labels: 1,2, . . . ,
n+1.
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The abstractions allows formany useful results from the field of algebraic topology.
For example De Loera et al. [3] where they proved theAtanassov conjecture [1] that for
any polytope withN vertices there areN −n simplices that receive a complete set of
Sperner labels. Meunier [13] further extended this theorem and more recently Musin
[14] extended the theorems to a large class of manifolds with or without boundary.

The theorems by Meunier and Musin allow us to extend Sperner’s lemma to a
simplicial complex built in a (n + 1)-dimensional non-euclidean space. This would
allow the application of ideas from discrete differential geometry. For example the
Gauss-Bonnet theorem holds for discrete simplicial surfaces [12].

In global optimisation theory a simplicial complex built in this space can be used
for approximating local and global Lipschitz constants for an objective function while
still retaining the ability to detect locally convex sub-domains in the search space.
Furthermore it allows for any results of optimization problems in real euclidean
spaces to be used in a large class of other spaces.

3.2 Invariance of Ψ ⊆ Ω

For black box functions there is no way to know if the number and distribution of
sampling points is adequate without more information (for example if the number of
local minima are known in the problem). However, it is an important property of the
algorithm that |M|will stop increasing with higher sampling after this point. First we
define an adequately sampled surface.

Definition 10 Consider a simplicial complexH built on an objective function f with
a compact feasible set Ψ using Definitions 6 through 9. The surface is said to be
adequately sampled if there is one and only one true stationary point within every
domain defined by Theorem 1.

The remainder of this section is devoted to proving the following theorem which
holds in the case where Ψ = [l,u]n.

Theorem 3 (Invariance of an adequately sampled simplicial complexH) For a given
continuous objective function f that is adequately sampled by a sampling set of size
N . If the cardinality of the minimiser pool extracted from the directed simplex H is
|M|. Then any further increase of the sampling set N will not increase |M|.

The proof provided in [6] relies on a homomorphism between the simplicial
complex H constructed in the bounded hyperrectangle Ψ and the homology (mod 2)
groups of a constructed surface S on which we can invoke the Invariance theorem
as defined in fundamental homologies such as Eilenberg and Steenrod [4]. To aid the
reader we review some of the abstract geometric and topological mechanisms used in
this proof, which will aid in understanding the proof in Section 4.

Endres et al. [6] defined the n-torus S0 from the compact, bounded hyperrectangle
Ψ by identification of the opposite faces and all extreme vertices. Now for every
strict local minimum point p ∈ Ψ puncture a hypersphere and after appropriate
identification the resulting n-dimensional manifold Sg is a connected g sum of g tori
S := S0 #S1 # · · · #Sg−1 (g times).
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For the reader’s benefit Figures 1 and 2 demonstrates the process geometrically.
Figure 1 shows how to puncture a hypersphere and make the usual identifications in
a 2-dimensional problem. Figure 2 demonstrates the construction of Sg .

4 Invariance and convergence of non-continuous, non-linear optimisation
problems with bounded variables

In this section we present the main contribution of this paper. Consider again Equa-
tion 1, but now we are working with the fully general case where g is non-linear
and Ω is not a compact set. In addition we allow f to be non-continuous (in having
removable or jump discontinuities across large sub-domains) and non-linear. It is still
assumed that the variables x are bounded. Furthermore we assume that there is a
feasible solution so thatΩ 6= ∅ and that there exists at least one point in the range of f
mapped within the domainΩ. We will prove that if the simplicial sampling sequence2
[5] is used, then SHGO will retain the Invariance property of Theorem 3. Secondly
convergence of the SHGO algorithm is proved when the number of sampling points
tends to infinity.

Before proving these properties we will need to define a new construction to deal
with discontinuities in f . From Definition 4 and Definition 5 it is clear that f will
only map a subset of feasible domain Ω, therefore only points within the this domain
need to be considered. A new construction replacing Definition 5 that considers
discontinuities (such as singularities) in the hypersurface of f is now defined:

Definition 11 For an objective function f , F is the set of scalar outputs mapped by
the objective function f : P → F for a given sampling set P ⊆ Ω ⊆ Rn. If a
mapping of a vertex vi does not exist, then we define the mapping as f : vi → ∞.
Any such point is excluded from the setM.

Note from Definition 8 that any vertex v, f(v) = ∞ that is connected to an-
other vertex in Ω that maps to a finite value will never be a minimiser. This simple
construction allows us to develop the following theorem:

Theorem 4 (Invariance of an adequately sampled simplicial complex H in a non-
convex, non-compact space Ω) For a given non-continuous, non-linear objective
function f that is adequately sampled by a sampling set of size N . If the cardinality
of the minimiser pool extracted from the directed simplexH is |M|. Then any further
increase of the sampling set N will not increase

Proof Theorem 3 holds for any compact hyperrectangular space B0 = [x1l , x
1
u] ×

[x2l , x
2
u]× · · · × [xnl , x

n
u]. Consider a set of subspaces Bi

∼= B0 with Bi ⊆ Ω ∀i ∈ I.
That is, Bi is any compact, rectangular subspace of Ω that is homeomorphic to B0

(which is also homeomorphic to a point) and can, therefore, be shrunk or expanded
to arbitrary sizes while retaining compactness. Therefore any triangulation Ki of Bi

retains the Invariance property from Theorem 3.

2 This sampling sequence refines a simplicial complex by sub-dividing the largest face of its simplices
and has the property that after every iteration the subdivisions of the complex are symmetric and isomorphic
to the initial triangulation
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v1v1

v1 v1 v2 v2

v2v2

∼=

∼=

∼=

∼=

∼=

∼=

∼=

Fig. 1 The process of puncturing a hypersphere at a minimiser point in a compact search space. Start by
identifying a minimiser point in the H1 (∼= K1) graph. By construction, our initial complex exists on
the (hyper-)surface of an n-dimensional torus S0 such that the rest of K1 is connected and compact. We
puncture a hypersphere at theminimiser point and identify the resulting edges (or (n−1)-simplices in higher
dimensional problems). Next we shrink (a topological (ie continuous) transformation) the remainder of the
simplicial complex to the faces and vertices of our (hyper-)planemodel.Make the appropriate identifications
for S0 and glue the identified and connected face z (a (n− 1)-simplex) that resulted from the hypersphere
puncture. The other faces (ie (n− 1)-simplices) are connected in the usual way for tori constructions)
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Fig. 2 The process of puncturing a new hypersphere on S0 #S1 can be repeated for any new minimiser
point without loss of generality producing S := S0 #S1 # · · · #Sg−1 (g times)

We allow all Bi to be connected or disconnected subspaces with respect to any
other Bj∈I within Ω. Now consider the (mod 2) homology groups H1(Ki) of Ki.
Since the homology groups are abelian groups the rank is additive over arbitrary direct
sums:

rank

(⊕
i∈I

H1(Ki)

)
=
∑
i∈I

rank(H1(Ki))

Therefore the triangulations of both connected and disconnected subspaces Bi within
a possibly non-compact space Ω will retain the same total rank. After adequate
sampling, the rank of H1(Ki) will not increase by Theorem 3. Any point that is not
in Ω is not connected to any graph structure by Definition 4 and Definition 5 and
therefore cannot increase the rank of any homology groupH1(Ki). Finally any vertex
vi ∈ Ω for which f(vi) does not exist will by Definition 11 be mapped to infinity
by Definition 11. By Definition 9, vi can not be a minimiser and therefore cannot
increase the rank of any homology group H1(Ki). For the reader’s benefit Figure 3
demonstrates this property geometrically.

We have shown that the total rank of the homology groups triangulated on all
connected and disconnected subspaces Bi ∈ Ω will not increase after adequate
sampling. It remains to be proven that these subspaces exist within Ω. We adapt the
proposition used in the convergence proof by Paulavičius et al. [17] for subdivided
simplicial complexes.
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Fig. 3 Visual demonstration on surfaces with non-linear constraints, the shaded region is unfeasible. The
vertices of the points mapped to infinity have undirected edges, therefore they do not form simplicial
complexes in the integral homology. The surfaces of each disconnected simplicial complex Ki can be
constructed from the compact version of the invariance theorem. The rank of the abelian homology groups
H1(Ki) is additive over arbitrary direct sums

Proposition 1 For any point x ∈ Ω and any ε > 0 there exists an iteration k(ε) ≥ 1
and a point xk

i ∈ Hn ∈ Ω such that
∥∥xk

i − x
∥∥ < ε.

Sampling points xi are vertices H0 belonging to the set of n-dimensional simplices
Hn. Let δkmax be the largest diameter of the largest simplex. Since the subdivision is
symmetrical all simplices have the same diameter δkmax after every iteration of the
complex. At every iteration the diameter will be divided through the longest edge,
thus reducing the simplices’ volumes. After a sufficiently large number of iterations all
simplices will have the diameter smaller than ε. Therefore the vertices of the complex
will converge to any and all points inside compact subspaces Bi within Ω. Since we
have assumed that Ω 6= ∅ this proves the existence of subspaces Bi.

This concludes the proof of Theorem 4

From this proof the convergence to a global minimum within Ω, if it exists, also
trivially follows by noting that Bi is homeomorphic to a point and that Theorem 1
applies to any minimiser in Bi. In practice Definition 11 is implemented in Endres
[5] by using exception handling that can capture any mathematical errors in addition
to converting any none float numbers outputted by an objective function to infinity
objects.
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Fig. 4 3-dimensional plot of Example 1

5 Numerical example: the geometry and topology of a non-continuous global
optimisation

5.1 Optimisation across discontinuities in f

Consider the following numerical example which contains a number of different types
of discontinuities.

Example 1 Consider an optimisation instance following objective function within
Ω ⊆ [l,u]n

f(x) =

{√
x21 − x22 − 1 + sin(x1) + cos(x2) + 3 ∀x1 ≥ 15√
x21 − x22 − 1 + sin(x1) + cos(x2) ∀x1 < 15

A 3-dimensional plot is provided in Figure 4. In Figure 5 we show the directed
simplicial complex approximation of f and their homology constructs. Furthermore
it is demonstrated that the sub-spaces are refined to locally convex sub-domains ofΩ.
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Fig. 5 Disconnected sub-graphs of Example 1 across its discontinuities

5.2 Performance discussion

The reliance on everywhere dense sets for convergence is questionable with respect
to the performance of algorithms. For example Stephens and Baritompa [21] showed
that in some cases algorithms must essentially reduce to a brute force. In general
efficient global optimisation requires global information. However, in many black-box
problems global information is difficult or impossible to obtain. For example it is
obviously the case that discontinuous functions do not have global Lipschitz bounds.

The rigorous concept of adequate sampling also proves both that the shgo algo-
rithm finds the global minimum before sets are everywhere dense (unless the solution
space is also everywhere dense) and that sub-domains can be used to obtain approxi-
mate global properties of f in the form of an invariance on f . For example Figure 6
demonstrates the homology group growth on Example 1 as the number of sampling
points is increased. This tool can be used by an optimisation practitioner to aid in the
visualisation of the behaviour of a function f which can’t be visualised in hyperspaces
of arbitrary dimensions (by for example plotting the surface). Informally, the growth
rate of the homology group rank ofH1(H1) is a measure of the approximate sparsity
of solutions and the pathology of f . The approximate equilibrium value of the rank
of H1(H1) as N becomes arbitrarily large (the growth is not always monotone) is a
measure of the multi-modality of f .

5.3 Singularities in f

The minimization of a function with infinite discontinuities on f has not been well
defined on Equation 1. Infinite discontinuities where the objective function becomes
arbitrarily large f → +∞ at a vector x∞ are simple enough to understand and fit
in well with our restructured objective function Definition 11. These points largely
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Fig. 6 Homology group growth of Example 1 across its discontinuities as a function of sampling pointsN

behave largely the same as any other points in unfeasible domains. However, when
the objective function becomes arbitrarily small at x∞, f → −∞, the solution to
Equation 1 becomes more difficult to define. For example the point x∞ is smaller than
any point inΩ, however, since the limit of the objective function is not defined at x∞,
it is not the infimum ofΩ. A precise rigorous definition is a subject of real analysis and
will not be discussed in depth in this publication. However, in optimisation practice
the solution to Equation 1is defined within some percentage error. Therefore any point
x∗ near the infinite discontinuity x∞ ← x∗ within some tolerance of

∥∥xk
i − x

∥∥ < ε
is considered a solution to Equation 1. In this neighbourhood the usual notion of
compact sub-domains still apply, the algorithms will seek well behaved sub-domains
that a contain a point x∗ ← x∞. In addition there is an arbitrarily small sub-domain
bounded by ∂ (st (x∗)) that is well behaved. As discussed in this section finding this
solution on a pathological surface reduces to brute force.

6 Conclusion

By constructing a homology on the objective function f we have shown that the
convergence of spatial partitioning algorithms trivially follows from the Invariance of
the homology. Furthermore we have shown that computing and tracking the homology
groups on f ! connects the concept of well-behaved functions !
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